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Abstract

Imitation is the ability to recognize, learn and reproduce the actions of oth-
ers. In addition to facilitating the transmission of knowledge and skills, it

has been suggested that this fundamental cognitive capacity is at the origin
of other human faculties such as action understanding, empathy, mind-reading
and language. Although the behavioral processes of imitation have been studied
for a century in ethology and psychology, neuroscience has only started being
interested in, stimulated by the discovery of a common neural substrate devoted
to the recognition and production of actions, namely, the mirror neuron system.
However, the existence of this system does not provide a comprehensive answer
to all questions about imitation. For instance, as mirror neurons, which fire both
during the observation and the execution of actions, were found in the monkey,
how could the behavioral differences reported in humans be explained in terms
of cortical functions and connectivity? Moreover, because of the existence of this
common neural substrate, which is activated irrespectively of who is performing
an action, how do humans not confuse their own actions with those of others?
And finally, how could different imitative strategies and imitation levels be pro-
duced by the brain according to behavioral and neurophysiological constraints?
In order to shed some light on these key questions, the approach adopted in
this work is to apply the principles of computational neuroscience by developing
neural models of the cortical networks involved in imitation processes.

In this thesis, the use of artificial neural networks is considered a fundamen-
tal methodology. More specifically, neural fields were chosen to be the central
modeling tools since this class of neural networks have been shown to be en-
dowed with many computational abilities, most of which were actually observed
experimentally in cortical regions. Although several computational models ad-
dressing imitation have already been proposed, rare are those which consider
the previously mentioned issues and especially by means of neural modeling.
To fill this gap, this thesis addresses the neural mechanisms underlying several
important cognitive processes. They are: a) the principle of ideomotor com-
patibility, by which one’s own performance is influenced by observing others;
b) the problem of frames of reference transformations that make it possible to
put oneself into someone else’s place and to simplify the sensorimotor mappings
required for imitation; and c) the ability to distinguish oneself from the others to
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make the perceived visual signals related to oneself or to others less ambiguous.
Importantly, in order to confirm or refute the neural models that are developed
in this work, behavioral studies are proposed along with the predictions of the
models. Finally, this thesis also provides a global model of cortical organization
in which the brain pathways of imitation are highlighted. Through this syn-
thesis, the neural processes of imitation in humans are suggested to not involve
specific cortical areas only as usually believed, but instead, the sensorimotor
cortex in its whole.

The contributions of this thesis are basically twofold. First, the developed
neural models of the cortical networks involved in imitation contribute to a
better understanding of the neural mechanisms underlying this human ability.
As such, it suggests several new directions and hypotheses for research in the
field of both experimental psychology and neuroscience. Secondly, this thesis
also contributes directly to the field of artificial neural networks by providing
new technical developments on the current knowledge of the computational
power of the neural field approach.

Keywords: Imitation, Cortical networks, Neural fields, Ideomotor principle,
Behavioral interferences, Frames of reference transformations, Sensory discrim-
ination.
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Résumé

L’imitation est généralement définie comme le résultat de la combinaison
des capacités de reconnaître, d’apprendre et de reproduire les actions pro-

duites par d’autres individus. En plus de faciliter la transmission du savoir et
des techniques manuelles, cette capacité cognitive semble aussi être à l’origine
de certaines facultés sociales telles que l’empathie et le langage. Cependant,
des comportements imitatifs non intentionnels et ne requérant aucune forme
d’apprentissage peuvent aussi être observés chez l’homme. Même si ces derniers
sont plus flagrant chez des personnes atteintes de trouble cérébraux, ils peuvent
néanmoins être à l’origine de nombreux comportements vécus au quotidien.

Bien que les processus comportementaux de l’imitation ont déjà été étudiés
durant le siècle dernier dans les domaines de l’éthologie et de la psychologie,
l’attention des neurosciences ne s’est développée que récemment. Cette dernière
a été stimulée par la découverte d’un substrat neuronal dévoué à la fois à la re-
connaissance visuelle des actions ainsi qu’à leur exécution, à savoir le système
miroir. Cependant, l’existence de ce système miroir ne peut, par lui seul, ex-
pliquer tous les phénomènes de l’imitation. Par exemple, étant donné que ces
fameux neurones dits miroirs, qui sont activés à la fois lors de l’observation et
lors de l’exécution d’actions, ont été découvert chez le singe, comment est-ce
que les importantes différences comportementales entre ce dernier et l’homme
pourraient être expliquées en termes de fonctions corticales ainsi qu’en termes
de connectivité cérébrale? De plus, puisque ce substrat neuronal commun est
recruté insensiblement de l’auteur d’une action observée, à savoir soi ou un autre
individu, comment ce fait-il que les humains ne confondent-ils pas systématique-
ment leur propres actions avec celles des autres? Finalement, comment est-ce
que les principales stratégies d’imitation reportés chez l’homme peuvent-elles
être produites et contrôlées par le cerveau? Afin d’apporter quelques éléments
de réponse à ces questions, cette thèse s’est concentrée à appliquer les principes
des neurosciences computationelles. C’est pourquoi, des modèles neuronaux sim-
ulant les réseaux corticaux impliqués dans les processus de l’imitation ont été
développés.

Tout au long de cette thèse, l’utilisation des réseaux de neurones artificiels
a été considérée comme une méthodologie fondamentale. Plus spécifiquement,
des réseaux connus sous le nom de champs de neurones (ou neural fields en
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anglais) ont été choisis comme outils de modélisation. En effet, cette classe
de réseaux de neurones possède de nombreuses propriétés computationelles, la
plupart desquelles ont été observées expérimentalement dans le cerveau. Mal-
gré le fait que plusieurs modèles computationels se focalisant sur l’imitation
ont déjà été proposés, rare sont ceux qui considèrent les problèmes soulevés
précédemment, et plus particulièrement en utilisant des modèles neuronaux.
Afin de combler ce vide, cette thèse se concentre sur plusieurs processus cogni-
tifs importants. Ces derniers sont: a) le principe de compatibilité idéomotrice,
par lequel l’observation des actions d’autres individus peut influencer la qual-
ité de ses propres actions, b) le problème des transformations de référentiels qui
permettent de se mettre dans la peau de quelqu’un d’autre, ainsi simplifiant
l’imitation, et c) la capacité de se distinguer des autres qui est importante pour
pouvoir déterminer si les signaux visuels perçus appartiennent à soi ou aux
autres. Ensuite, afin de pouvoir confirmer ou réfuter les modèles développés
dans ce travail, des propositions d’études comportementales accompagnées des
prédictions des modèles sont fournies. Enfin, cette thèse propose aussi un mod-
èle global de l’organisation du cortex, dans lequel les chemins cérébraux de
l’imitation peuvent être mis en avant. A travers cette synthèse, les processus
neuronaux de l’imitation sont suggérés de ne pas recruter uniquement certaines
aires cérébrales, mais plutôt le cerveau sensorimoteur dans son ensemble.

Les contributions de cette thèse sont principalement de deux types. Pre-
mièrement, les modèles neuronaux représentant les réseaux corticaux impliqués
dans l’imitation contribuent à une meilleure compréhension des mécanismes
neuronaux responsable de cette capacité humaine. Par conséquent, ce travail
suggère de nouvelles directions et des hypothèses destinées à la recherche dans les
domaines que sont la psychologie expérimentale et les neurosciences. Deuxième-
ment, cette thèse contribue aussi au domaine des réseaux de neurones artificiels.
En effet, de nouveaux développements techniques étendant les connaissances
actuelles concernant les propriétés computationelles de la classe de réseaux de
neurones adoptée ici ont été proposés.

Mots clés: Imitation, Réseaux corticaux, Champs de neurones, Principe
idéomoteur, Interférences comportementales, Transformations de référentiels,
Discrimination sensorielle.
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Chapter 1

Introduction

1.1 Motivations

Imitation is usually defined as the combined ability to recognize, learn and re-
produce the actions of others. It is also a fundamental cognitive mechanism

for the transmission of knowledge and skills. For decades, the behavioral pro-
cesses of imitation have been the focus of studies in ethology (Tomasello, Savage-
Rumbaugh, & Kruger, 1993) and in developmental psychology (Greenwald,
1970; Piaget, 1978; Meltzoff & Moore, 1997; Wohlschläger, Gattis, & Bekker-
ing, 2003). Indeed, this cognitive skill is believed to have important implications
with respect to other cognitive abilities such as action understanding (Zukow-
Goldring, 2004), empathy, mind-reading (Gallese & Goldman, 1998) and lan-
guage (Arbib, 2002). Moreover, research on imitation has also been driven by
more practical goals, such as those devoted to develop pedagogical techniques
(Piaget, 1978), design human-machine interfaces (Greenwald, 1970; Calinon &
Billard, 2007), and understand and treat mental diseases such as apraxia or
autism (Field, Field, Sanders, & Nadel, 2001; Iacoboni, 2006; Petreska, Adri-
ani, Blanke, & Billard, 2007).

Another reason why the study of the mechanisms of imitation is constantly
attracting more and more researchers, is simply the human desire to understand
the brain, and consequently to be able to reproduce artificially its function-
ing. Importantly, the scientific community involved in robotics has great ex-
pectations in improving current control methods by developing computational
techniques inspired from the insights provided by neuroscience and psychology
(Schaal, 1999; Asada, McDorman, Ishiguro, & Kuniyoshi, 2001; Billard, Epars,
Calinon, Cheng, & Schaal, 2004; Calinon, Guenter, & Billard, 2007). One im-
portant trend in this discipline consists in endowing robots with the ability to
learn from demonstration. Indeed, rather than using abstract programming
languages, this method could be a much easier and a more natural way to pro-
vide skills to robots, as humans do with their children. The work presented
here is however more theoretical, and aims at understanding the underlying
neural mechanisms and the cortical structures at the origin of the behavioral
expressions of imitation.

1



The Behavioral Expression of Imitation

Despite the importance of the human ability for imitation, a better under-
standing of the cognitive and the neural mechanisms underlying it has only
recently received significant new insights from both experimental psychology
and neurophysiology. Interestingly, the former field of research often considers
only the automatic side of imitative behaviors which do not require explicitly
any form of learning (Bekkering, Wohlschälger, & Gattis, 2000; Brass, Bekker-
ing, Wohlschläger, & Prinz, 2000; Stürmer, Aschersleben, & Prinz, 2000; Kilner,
Paulignan, & Blakemore, 2003; Heyes & Ray, 2004). Indeed, the cognitive mech-
anisms of imitation are not restricted to learning processes. Humans do often
exhibit imitative behaviors which are unconsciously triggered and which simply
reflect automatic sensorimotor processes. The approach adopted in this thesis
assumes that understanding the mechanisms underlying these sensorimotor pro-
cesses will provide useful insights which may further help get a glimpse of the
neural processes of imitation as a whole.

In the developmental and experimental psychology literature, automatic im-
itative behaviors are often referred as a manifestation of the principle of ideo-
motor compatibility, by which the observation of an action performed by another
individual is suggested to activate the motor images responsible for the exe-
cution of that same action (Greenwald, 1970; Piaget, 1978; Brass, Bekkering,
& Prinz, 2001). As reported by experimental studies, this ideomotor principle
has been shown to affect one’s own behavior at different levels. At the motor
level, the observation of an action has been shown to facilitate or interfere with
movement initiation when both movements are identical or different, respec-
tively (Brass et al., 2000; Bertenthal, Longo, & Kosobud, 2006). In addition,
at a more emotional level, a significant increase of the breathing rhythm has
been reported in subjects who only observed people performing effortful actions
(Paccalin & Jeannerod, 2000). Finally, at a more cognitive level, it has also
been shown that the context in which action observation occurs may influence
how imitation is performed. For instance, the strength with which one may
manipulate an object can be affected by the observation of someone else ma-
nipulating either a heavy or a light object (Hamilton, Wolpert, & Frith, 2004).
Together, these results suggest that the neural mechanisms associated with ac-
tion observation and action execution are tightly linked, and subsequently, that
several neural structures should be shared by these two processes.

Similar automatic sensorimotor behaviors involving visual stimuli of different
kinds are very common in experimental psychology. A famous example is the
so-called Simon-effect. It describes that the spatial compatibility between an in-
struction stimulus and the associated required motor responses produces faster
response, whereas spatially incompatible stimulus-response pairs are more prone
to interfere with movement initiation (Simon, Sly, & Vilapakkam, 1981). Due to
their conceptual similarity, ideomotor and spatial compatibility processes were
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often intermingled (Brass et al., 2000). Only recently, studies tried to disam-
biguate them. Results of behavioral and brain imaging experiments suggest that
both processes do contribute concurrently to the selection of a motor response,
but they seem to be controlled by different cognitive pathways and brain regions
(Brass, Derrfuss, & von Cramon, 2005; Rumiati et al., 2005; Bertenthal et al.,
2006). However, the neural mechanisms as well as the exact cognitive routes
still remain unclear. Brain imaging studies usually only highlight the cortical
areas that are activated during a given task, but they do not give much clues
concerning the neural processing occurring at the neuron level. The present
work will try to investigate this issue and those that will be described further in
this introduction. It will also suggest computational answers as well as methods
to validate or refute the subsequently raised hypotheses.

Furthermore, another important behavioral aspect of imitation is its goal-
directedness (Meltzoff, 1995; Bekkering et al., 2000; Wohlschläger & Bekkering,
2002; Gergely & Csibra, 2003). This means that, when humans are asked to
imitate, they are biased to primarily reproduce the goal of observed actions
rather than the means of their achievement. However, when the goal of an
observed action is absent, the reproduction of purely intransitive or meaningless
gestures becomes more accurate (Wohlschläger & Bekkering, 2002; Heyes & Ray,
2004; Rumiati et al., 2005). Interestingly, ethological studies comparing monkey
and human behavior showed that the imitative strategies adopted by monkeys
are strictly goal-directed, whereas humans usually try to copy both goals and
means (Tomasello et al., 1993). This behavioral finding clearly suggests that
humans are endowed with a more complex cortical structure for imitation which
is also capable to process intransitive actions.

Another issue concerns the human natural tendency for mirror or specular imi-
tation with respect to anatomical imitation (Bekkering et al., 2000; Wohlschläger
& Bekkering, 2002; Heyes & Ray, 2004). Indeed, when a demonstrator is facing
a person and executes a movement to imitate, the imitator shows a preferential
tendency to mirror the observed movements, i.e., (s)he preferentially uses the
left hand to imitate a movement performed with the right hand and vice-versa,
rather than to reproduce it as if (s)he was located in the shoes of the demon-
strator (Bekkering et al., 2000; Wohlschläger et al., 2003; Heyes & Ray, 2004).
From this, one may ask how these two different imitative strategies are encoded
in the brain. Are there separate pathways mediating each of them, and how
could one strategy be selected against the other?
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Neural Substrates

Following from these findings, one may ask for the existence of neural sub-
strates which may explain the causes of these behavioral expressions of imita-
tion. For a long time, the knowledge of the neural substrates and mechanisms
of this key human cognitive ability was very limited, but recent collaborative
research in neuroscience and experimental psychology has made crucial discov-
eries at both the brain and the single cell levels (Rizzolatti, Fadiga, Gallese, &
Fogassi, 1996; Iacoboni et al., 1999; Decety, Chaminade, Grezes, & Meltzoff,
2002). The most important finding of these studies is the neurological evidence
of the existence of a common neural substrate devoted to the recognition and
the production of movements, namely, the mirror neuron system. However, the
existence of such a mirror system may not be sufficient to explain all the mech-
anisms of imitation in humans. Indeed, since this mirror system was discovered
in both humans and monkeys, a direct association between imitation and the
mirror system could be seen as contradictory with respect to the behavioral
differences between these akin species (Gallese & Goldman, 1998; Zentall, 2003;
Lyons, Santos, & Keil, 2006). Nevertheless, the mirror system is still strongly
believed to be part of the imitation system. Its probable implications in mental
simulations, forward control and the prediction of actions argue in this direction
(Gallese & Goldman, 1998; Miall, 2003; Wolpert, Doya, & Kawato, 2003).

Moreover, while this system offers an exciting line of study, it has yet to be
shown how this circuit, in connection with other better-known neural circuits
for visual representation of movements and for motor control, may explain the
behavioral data on imitation. Indeed, imitation is not the behavioral expression
of a stand-alone system which would be localized in a specific brain region. It
is rather distributed and embedded in the whole cortical sensorimotor circuit.
Consequently, the mirror system is suggested to be an emerging product of the
combination of lower-level brain mechanisms, which were originally devoted to
other functions, e.g., the control and the visual perception of movements (Arbib,
Billard, Iacoboni, & Oztop, 2000; Oztop & Arbib, 2002; Wolpert et al., 2003;
Keysers & Perrett, 2004). Additionally, the mechanisms of imitation may also
be carried out with the help of other and less considered cognitive abilities,
such as those mediating the recognition of conspecifics, the distinction between
the self and the others, and the attribution of others’ intentions or states of
mind (Gallese & Goldman, 1998; Decety & Sommerville, 2003; Jeannerod, 2003;
Oztop, Kawato, & Arbib, 2006).

Frames of Reference for Imitation

Central to the vast majority of neurophysiological, behavioral and compu-
tational studies addressing imitation is the mirror neuron system. It is however
located relatively far from the brain areas receiving primary sensory informa-
tion. As indicated by neurophysiological studies in both humans and monkeys,
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this system involves parts of the premotor cortex, posterior parietal cortex and
superior temporal sulcus (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; Iacoboni
et al., 1999; Rizzolatti, Fogassi, & Gallese, 2001). The neurons located within
these regions react thus to highly processed stimuli. They were shown to en-
code information in a goal-centered frame of reference, which suggests a mirror
system tuned for action. In addition to this neurophysiological characteristic of
the monkey’s mirror system, the human ability to imitate intransitive actions
may also imply an encoding of the visual inputs related to other individuals
within a body- and body-parts- centered frames of reference.

In order to obtain such representations, a common belief, corroborated by
experimental data, is that the series of transformations across reference frames,
required for transferring visual information initially sensed within the retina into
goal-centered representations, is gradually performed by different groups of cells
along the visual pathways (Perrett, Harries, Mistlin, & Chitty, 1989; Burnod et
al., 1999). This nevertheless requires appropriate neural mechanisms. Moreover,
since many neurons, especially those named as mirror, exhibit a sensitivity to
sensory information coming from multiple modalities such as proprioceptive,
motor, visual and auditory, one may also wonder whether the neural mechanisms
in charge of transforming each of these modalities are similar or different. For
instance, while proprioceptive information is mostly encoded in a local frame of
reference, i.e., each sensory receptor responds to the limb orientation which it is
associated with, visual information is encoded within a global reference frame,
i.e., all the visual inputs are perceived within the same reference frame centered
on the retina. Therefore, it is likely that the nervous system may take advantage
of these discrepancies to perform the transformations, but this remains to be
proven.

Shared Representations and the Self versus the Others

Another issue which is rarely considered while modeling the mechanisms of
imitation arises because of the shared nature of the mirror system. Indeed, this
common neural substrate is activated irrespectively of who is performing an
action, i.e., either the self or other individuals. From this, one may ask why
humans do not confuse their own actions with those executed by others. This
ability for recognizing the self from the others, which can already be observed
in neonates (Rochat & Hespos, 1997), is fundamental in order to deal with
shared representations (Decety & Sommerville, 2003; Jeannerod, 2003). While
performing an action, if one simultaneously observes someone else executing a
different action, and one is capable to avoid considering this visual information
as a self-sensory feedback, one’s own action would not be perturbed. However,
interferences reported by an increase of movement variability can be noticed
in such conditions (Kilner et al., 2003; Chaminade, Franklin, Oztop, & Cheng,
2005). This suggests that the inhibitory effect of self-recognition processes is
not as strong as it could be. One may even argue that this weak, but sufficient
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inhibition may be at the origin of the behavioral expression of the ideomotor
principle, and subsequently of imitative behaviors.

This calls for an explanation as to how the brain is capable, within its shared
representations, whose role is also to perform multisensory integration, to mini-
mize the conflicts coming from potentially contradictory sources of information,
such as those related to the self and those related to other individuals. First,
the visual attributes of a given body seem to contribute to a large extent to
self-recognition (Van Den Bos & Jeannerod, 2002; Haggard & Clarke, 2003;
Jeannerod, 2003). However, when this information is ambiguous, a mechanism
has been suggested whereby an internal prediction of the consequences of mo-
tor acts is compared with their real sensory outcomes. Depending on their
similarity, the brain may determine the ownership of the observed movement
(Van Beers, Baraduc, & Wolpert, 2002; Decety & Sommerville, 2003). Since
this issue is rarely considered in computational studies addressing imitation, an
important part of this thesis will be devoted to its investigation. But before
summarizing the main research questions which will be tackled in this work,
a rapid outlook of the related modeling studies on imitation is provided. Note
that more details on each topics addressed in this introduction will be presented
along this thesis.

Related Computational Models

A growing number of modeling studies have addressed the mechanisms of im-
itation as well as those underlying the mirror neuron system. These models can
be separated within two broad and partly overlapping classes. First, the large
majority of the models addressing imitation is not primarily intended to explain
the cognitive mechanisms behind the mirror neuron system or imitation, but
rather tries to understand the computational prerequisites of imitation and ap-
ply engineering techniques for endowing robots with imitative abilities (Schaal,
1999; Ijspeert, Nakanishi, & Schaal, 2002; Calinon & Billard, 2007; Guenter,
Hersch, Calinon, & Billard, 2007). Although these models may provide impor-
tant computational landmarks and key steps toward a better understanding of
this human skill, this work is more concerned with the second class of models,
which is fundamentally directed toward the understanding of the cognitive and
the neural processes underlying imitation as observed in humans.

Interestingly, the authors of this second class of models come from many
different fields of research, such as experimental psychology, neurophysiology,
robotics and computer sciences, to cite some examples. Consequently, across
these studies, several levels of modeling have been adopted. At the highest level,
there are general theories of imitation, one of which suggests for instance that
this ability is grounded within the sensorimotor loops and may then develop
through their maturation (Piaget, 1978). This has then led to the simulation
theory which proposes that imitation is driven by sensorimotor resonance, which
is triggered by observation of other individuals. When one observes somebody
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else performing actions, one is internally simulating these acts as if one was
actually executing them (Piaget, 1978; Gallese & Goldman, 1998; Rizzolatti
et al., 2001). Then come more specific models such as those putting forward
the goal-directedness of imitation (Bekkering et al., 2000; Wohlschläger et al.,
2003). High-level studies also emphasize the associative nature of the mech-
anisms underlying imitation, both at the behavioral level (Heyes, 2001) and
at the neural level (Keysers & Perrett, 2004). Going one step down further,
there are also computational or connectionist approaches explaining the mirror
system, some of which directly aim at reproducing neural activation patterns
(Arbib et al., 2000; Oztop & Arbib, 2002; Bonaiuto, Rosta, & Arbib, 2007),
whereas the others try more to take advantage of their properties in order to
endow their model with imitative behaviors (Billard & Mataric, 2001; Erlhagen,
Mukovskiy, et al., 2006; Cuijpers, Van Schie, Koppen, Erlhagen, & Bekkering,
2006; Petreska & Billard, 2006). While these studies mainly focus on a system
level, other approaches consider the mirror system as an integrative part of the
motor system and even show how mirror properties may naturally emerge from
the structure of the motor system (Demiris & Johnson, 2003; Wolpert et al.,
2003; Oztop, Wolpert, & Kawato, 2005). Finally, at the lowest level, several
studies adopted a developmental methodology as highlighted by Piaget (1978),
where the models are embodied, and initially endowed with only simple motor
and visual abilities. While exploring their environment, these systems learn
their own visuomotor mapping, and by extending their sensitivity to the per-
ception of the body of other agents, imitative behaviors emerge through a form
of visual confusion between the visual feedback of these agents and their own
internal representation (Andry, Gaussier, Nadel, & Hirsbrunner, 2004; Weber,
Wermter, & Elshaw, 2006).

A Computational Neuroscience Approach

This thesis will take inspiration from most of the computational studies
presented above in order to investigate the issues raised throughout this intro-
duction. However, this research work departs from these studies from the fact
that it primarily investigates important mechanisms required for imitative be-
haviors to exist, which were often forgotten or bypassed while modeling this
phenomenon. They include the neural mechanisms of transformations across
frames of reference and the ability to discriminate the self from the others.
Nevertheless, this work still follows the same approach as several recent studies
by adopting the computational neuroscience methodology (Arbib et al., 2000;
Keysers & Perrett, 2004; Erlhagen, Mukovskiy, et al., 2006; Oztop et al., 2006;
Petreska & Billard, 2006; Weber et al., 2006). Since the major aim of this the-
sis is to provide a better understanding of the brain circuits of imitation, this
approach, which serves as an important theoretical method for investigating
the function and mechanism of the nervous system, is well suited. Computa-
tional neuroscience allows to bridge experimental psychology, neurophysiology
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and theoretical models, by taking inspiration and merging the results obtained in
these disciplines. Although computational modeling could never provide exact
explanations of the processes occurring in real biological systems, it can however
produce simplifying theories and fundamental principles. In addition, this ap-
proach is influenced by different constraints than those of experimental studies,
and hence may develop hypotheses from different points of view, which could
be challenging and fruitful for both scientific communities (Lazebnik, 2002).

Therefore, the neural models developed throughout this thesis will try to
stick as close as possible to biology in order to be capable of pretending to
model biological systems and giving sound experimental predictions that could
be verified by future biological experiments. As modeling tools, the class of
neural network known as the neural fields or the continuous attractor neural
networks has been adopted (Wilson & Cowan, 1973; Amari, 1977; Erlhagen &
Schöner, 2002; Trappenberg, 2005). Indeed, in the past decades, these math-
ematical tools were intensively used in order to model and implement brain
cognitive functions. In addition to their biologically plausible structural re-
lationship with real cortical neural ensembles, their numerous computational
properties have made them very attractive to the computational neuroscience
community. For instance, these models, originally proposed to explain the for-
mation patterns of cortical representations, were then applied to other research
topics such as visual processing (Ben-Yishai, Bar-Or, & Sompolinsky, 1995;
Mineiro & Zipser, 1998; Giese, 2000), visual attention (Rougier, 2006; Vitay
& Rougier, 2006), spatial navigation (Zhang, 1996; Redish, 1999; Xie, Hahn-
loser, & Seung, 2002; Stringer, Rolls, & Trappenberg, 2004), memory (Compte,
Brunel, Goldman-Rakic, & Wang, 2000; Rolls, Stringer, & Trappenberg, 2002),
motor control (Kopecz & Schöner, 1995; Lukashin, Amirikian, Mazhaev, Wilcox,
& Georgopoulos, 1996), decision making (Kopecz & Schöner, 1995; Erlhagen &
Schöner, 2002; Schöner, 2002), sensorimotor transformations (Deneve, Latham,
& Pouget, 2001; Salinas & Thier, 2000; Meńard & Frezza-Buet, 2005), stim-
ulus binding (Wersing, Steil, & Ritter, 2001), parameter estimation (Deneve,
Latham, & Pouget, 1999; Pouget, Dayan, & Zemel, 2003), and even higher-level
cognitive functions such as imitation (Andry et al., 2004; Erlhagen, Mukovsky,
& Bicho, 2006).
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1.2 Aim of this Thesis

The aim of this thesis is to develop neural models capable to shed some
light on several key neural mechanisms related to human ability to imitate.
As outlined in the previous section, despite the recent and important discover-
ies related to the behavioral and neurophysiological mechanisms of imitation,
several research questions still remain open. Those of which that will receive a
special attention throughout this thesis are summarized below.

Brain Pathways of Imitation:

• How are automatic imitative processes grounded on the clas-
sical information pathways of sensorimotor transformation?
How do these different processes interact, at which cortical
level, and how do these interactions affect human behavior?

Frame of Reference Transformations and Imitative Strategies:

• How may the brain transform sensory information across
different frames of references? In particular, how could the
visual representation of a person’s posture gathered in a eye-
centered frame of reference be transformed in a reference
frame useful for imitation?

• How are the different imitative strategies, i.e., spatial and
anatomical imitation, encoded? Is there a single neural
structure mediating them or do they involve different neural
pathways?

Sensory Integration, Prediction, and Discrimination:

• Are there neural mechanisms that allow internal representa-
tions to simultaneously integrate and predict their sensory
inputs?

• Then, would these mechanisms be capable of differentiat-
ing between the visual signals associated with self-generated
movements and those produced by other individuals? And
finally, could these neural processes explain the imitative in-
terferences reported during simultaneous action observation
and action execution?

In order to address these questions, this thesis will follow two major lines of
research grounded on different levels of modeling. First, at the microscopic level,
this work addresses the mechanisms of information processing within neural
circuits, which are composed of a relatively small number of neurons grouped
within a compact brain region and subserving some fundamental functionali-
ties. In the light of the main thread of this work, neural representations and

9



the dynamics of sensory integration and transformation will be analyzed and
discussed. As mentioned earlier, although this work focuses mainly on the men-
tal processes related to imitation, the biological inspiration comes from a wide
range of subfields of neuroscience. Indeed one could argue that the fundamental
neural mechanisms are similar across cortical regions. Complementarily, during
the modeling of the neural circuits related to imitation, the resulting models
may also, by extension, explain more general processing strategies, common to
other cortical areas, than initially thought.

Secondly, at the macroscopic level, large network models of these neural cir-
cuits will be considered. According to brain imaging and neurophysiological
studies, these circuits will be associated with specific cortical areas. The analy-
sis of the interaction between the subparts of such large networks will then help
shedding some light on the cortical information pathways of imitation. At both
levels, the validation of the models with biological data will allow to provide
predictions and to raise new research questions.

1.3 Road-map of this Dissertation

The topics addressed by each chapter as well as their associated contributions
are briefly described below.

Chapter 2: Biological and Modeling Background

This chapter reviews experimental findings related to the bio-
logical mechanisms of imitation. It includes a description of the
results gathered by experimental psychology and neuroscience, on
which the present modeling study is grounded. In addition, some
relevant computational models that address the brain mechanisms
of imitation are also presented.

Chapter 3: Artificial Neural Networks

In this chapter, the modeling approach, and more specifically the
modeling tools, adopted throughout this thesis are introduced.
After a brief review concerned with artificial neural networks in
general, this chapter then focuses on the class of neural networks
known as the neural fields. A description of their dynamics and
their fundamental computational properties is provided.

Chapter 4: Brain Pathways of Imitation and the Ideomotor

Principle

This chapter begins the description of the modeling work accom-
plished throughout this thesis. This study first shows that the
neural field approach is adapted to model the dynamics of auto-
matic imitative behaviors. It presents two connectionist models
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accounting for a related behavioral study, which addresses the
principle of ideomotor compatibility in a stimulus-response task
involving imitative and abstract visual cues. Interestingly, dis-
tinct cortical pathways can be associated to each model, which
assumes, respectively, a direct sensorimotor route for imitative
responses, or a common decisional pathways for both imitative
and goal-directed actions. Thus, in order to confirm or refute
either of the two models, a novel experimental paradigm is pro-
posed along with its experimental predictions.

Chapter 5: Frames of Reference Transformations

In the study presented in Chapter 4, the visual representation of
observed movements is assumed to be encoded within the same
frame of reference as the representation of self-actions. In order
to fill this gap, this chapter addresses the problem of transfor-
mations across different frames of reference. It basically presents
several biologically plausible neural mechanisms capable of per-
forming this transformation, and discusses their properties in the
light of neurophysiological data. In particular, this work proposes
that different mechanisms may be in charge of transformations
involving different sensory modalities.

Chapter 6: Interferences in the Transformation of Frames

of Reference

Following from the models developed in Chapter 5, a model in-
volving two parallel imitative strategies based on different mech-
anisms of frames of reference transformations is described. More
precisely, anatomical and spatial imitation are considered. In ad-
dition, an experimental task, based on an interference paradigm,
is also proposed, which requires imitation of meaningless body
postures with respect to these two different strategies. The pre-
dictions provided by this simulation study are finally suggested
to be confronted to real behavioral data in order to validate or
refute the model.

Chapter 7: Motion Integration, Motion Sensitivity, Sen-

sory Prediction and Sensory Discrimination

This chapter presents an extension of the classical neural field
models, that allows the dynamical integration of velocity informa-
tion for updating dynamically neural representations. By means
of a detailed encoding of the inputs to the network, the devel-
oped model is then analyzed in the light of its implications to
some fundamental neural mechanisms such as stimulus velocity
tuning , mental simulation, and sensory discrimination.
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Chapter 8: Movement Generation, Sensory Integration,

Sensory Discrimination and Interferences

This chapter proposes a model derived from that described in
Chapter 7 in order to confront it to real experimental paradigms.
The issues addressed here concerns the problem of multisensory
integration in situations where biases are imposed on self-sensory
feedbacks, and where movements performed by others may in-
terfere with one’s own internal representation. In this model-
ing study, a neural structure capable of generating movements is
first described. Then, when coupled with the model described
in Chapter 7, a predictive closed-loop system is produced. Fi-
nally, by confronting this model to behavioral experiments, sev-
eral hypotheses and predictions are raised relatively to the neural
mechanisms of imitation.

Chapter 9: Synthesis: Toward an Unified Cortical Model

of Imitation

This chapter first summarizes the main contributions of this the-
sis. Then, it presents a global cortical model which encompasses
and merges together all the modeling studies accomplished in
this work. This synthetic model is finally suggested to provide
a coherent view of the neural processes and cortical pathways
underlying imitation in general.

Chapter 10: Limitations and Future Work

This chapter provides a discussion related to the main limitations
of the work presented in this thesis as well as future directions
for research.

Chapter 11: Conclusion

This chapter finally concludes this thesis by summarizing its main
contributions.

In the Appendices, supplementary information such as simulation
parameters, additional implementation details, and mathemati-
cal developments can be found.
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Chapter 2

Biological and Modeling

Background

This chapter presents a general review of the behavioral, neurophysiologi-
cal and computational literature addressing imitation. The studies herein

provide the basis for the modeling work presented throughout this thesis. First,
different types of behaviors related to imitation are described from both etho-
logical and behavioral points of view. Next, a review of the fundamental aspects
of imitation, as reported by experimental psychology, is given. In order to be
able to deeply explore the brain mechanisms underlying imitation, the major
neural correlates of imitation are also presented. This neurophysiological review
is deliberately broad. Since imitation is believed to be the result of a tight re-
lationship between several sensory and motor processes, presentation of these
sub-systems is necessary in order to get a glimpse of the global processes un-
derlying the emergence of the mirror system, a neural substrate thought to be
part of the core system for imitation in animals. Following that discussion will
be a synthesis of the cortical pathways suggested to be responsible for imitative
behaviors in monkeys and humans. The chapter ends with a description of some
relevant attempts to model imitative skills and the mirror system.

2.1 Views on Imitation

Imitation has been the focus of research interests for a very long time. Early
works on this subject can be found in the psychological and ethological litera-
ture at the end of the 19th century (Thorndike, 1898; Baldwin, 1902). Without
going into too much detail, imitation was, in those days, described as a mecha-
nism providing better chances of survival for an individual within a social group
(Baldwin, 1902), by learning to do an act from observing another (Thorndike,
1898). Later, through a longitudinal study of the development of his children
Piaget (1978) proposed that imitation may be the mechanism allowing the cog-
nitive transition from low-level sensorimotor processes to higher semantic rep-
resentations. In parallel, Nadel, Guerini, Peze, and Rivet (1999) have stressed
the importance of imitation in the development of social communication skills
which begin already in very young children.

During this century of research, imitation has been shown to have different
forms, corresponding to different levels of cognitive complexity. Importantly,
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some of them can be seen as producing imitative behaviors from the point of
view of an observer, but do they really express the use of a special cognitive
strategy for imitation? When two friends drink a glass of water at the same
time, does it mean that they are imitating each other? The following para-
graphs specially aim at giving some definitions on imitation, which contempo-
rary scientists, including behaviorists (Tomasello, 1990), psychologists (Piaget,
1978; Meltzoff & Moore, 1997; Heyes, 2001) and cognitive scientists (Schaal,
1999; Billard, 2002; Demiris & Hayes, 2002) use to distinguish between different
forms of imitation .

2.1.1 Low-level Imitation

A general distinction between the levels of imitative acts has been made. At
the highest level, what is called true imitation is a behavioral strategy which is
usually only attributed to human beings. As will be described in more details
further in the text, it requires the combination of complex cognitive processes,
such as the attribution of intention to observed individuals, and the ability to
faithfully reproduce sequences of movements aimed at reaching a behavioral
goal. In contrast, low-level imitation is more concerned with basic sensorimo-
tor mechanisms linking perception with action. Such low-level mechanisms,
displayed in both human and monkey, are nevertheless of fundamental impor-
tance. Indeed, in a bottom-up approach to the development of behaviors, they
are suggested to be prerequisites on which true imitation can develop.

Stimulus Enhancement and Emulation

In one of its simplest forms, imitation is considered as the result of a stimulus
enhancement, which elicits a specific motor response to a stimulus. Importantly,
the trigger of the imitative act is not the observation of the action per se,
but the presence of an object, i.e., the stimulus, which has become salient due
to the actions of others (Byrne & Russon, 1998). By focusing the attention
on the salient object, the probability of reproducing the same action as that
which has made the object relevant, is increased. In this case, the chance to
observe an imitative act is more the result of a biased lottery. Indeed, here,
imitation is not intentional. Similarly, the mechanisms of emulation are based
on the same principles (Byrne & Russon, 1998). The subtle difference between
stimulus enhancement and emulation is that, emulation depends only on the
satisfaction of a specific goal (Tomasello, 1990). For instance, when observing
someone acting in order to reach a goal, the mechanisms of emulation can initiate
any behavioral strategy which can successfully reproduce that goal. Again, an
imitation of the means of achieving the goal gets more chance to be observed,
but is sill not intentional.
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Response Facilitation

Next, a third form of imitation is related to the means of achieving an action-
goal, namely response facilitation (Byrne & Russon, 1998; Schaal, 1999). The
probability of imitating the means of an action is increased by its prior observa-
tion. The underlying mechanisms of response facilitation are proposed to be the
result of a visuomotor resonance. The representation of an action, which has to
be known by the observer, is stimulated by the observation of that same action.
As a consequence, its reproduction becomes more likely. Examples of such imi-
tative behaviors have been reported in several species such as in rats (Heyes &
Dawson, 1990), chimpanzees (Tomasello et al., 1993; Whiten, Custance, Gomez,
Teixidor, & Bard, 1991) and humans (Meltzoff & Moore, 1977). In humans, be-
haviors involving response facilitation have been described in young infants. For
instance, they were shown to be capable of imitating tongue protrusion while
observing an experimenter doing the same action in order to trigger this specific
behavior (Meltzoff & Moore, 1977). Interestingly, the authors of this study sug-
gested a model in which the observation of actions performed by others triggers
an internal representation responsible for reasoning about self-actions as well
as for their execution (Meltzoff & Moore, 1997). Indeed, this form of imitation
is the first one which considers the concept of shared representations between
the observation of action and its execution. Importantly, this shared represen-
tation hypothesis has recently been shown to possess neural correlates in the
primate brain (Rizzolatti, Fadiga, et al., 1996; Iacoboni et al., 1999; Decety
& Sommerville, 2003), which will be addressed in details in Section 2.3 of this
chapter.

Although the forms of imitation described above are similar because they
can all be unintentional, they also share the property that they evolve at the
level of an atomic act, i.e., a single action, and not at the level of complex
sequences of movements. The observation of an action or an object is directly
mapped into a motor representation within the motor primitives of the observer.
Consequently, a novel action, not already present in the motor repertoire can
not be imitated. Moreover, since memory is not considered in these imitative
strategies, sequences of movements leading to a satisfaction of a goal can also not
be reproduced. These issues are precisely what distinguishes low-level imitation
from true imitation.

2.1.2 True Imitation

In its most complex form, true imitation requires the ability to reproduce and
learn new motor skills which are not part of the imitator’s current motor reper-
toire. The imitator must also be capable of extracting the purpose of a given
sequence of movements, and reproduce the means of its achievement faithfully
in the correct order (Byrne & Russon, 1998). In addition to the intentionality
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of true imitation, the ability to decompose observed movements into primitives,
and then to structure them in a novel hierarchy is fundamental (Byrne, 1999).
Moreover, true imitation is also often endowed with generalization capabilities
in time and space. Spatiotemporal generalizations correspond to the ability to
imitate in a different moment in time and in a different context. Cognitive pro-
cesses for understanding the steps of how to achieve a goal by observation in
a particular situation, should allow either complete or partial repetition, when
the goal or sub-goals are perceived in a different context.

This paragraph ends the brief review of how types of imitation have been
distinguished during the past century. This section was not meant to be exten-
sive, but tried to concentrate on some of the fundamental aspects of imitative
behaviors on which this work is based. However, several open questions remain
with respect to these behavioral aspects. They concern the cognitive processes
which enable imitative behaviors to develop as well as the possible cortical
discrepancies between humans and monkeys which results in the behavioral dif-
ferences reported above between these species. In addition, quantitative results
are missing from these studies which mostly describe imitation qualitatively.
This last methodological issue nevertheless been partly resolved thanks to the
growing interest of experimental psychology to imitation. Importantly, several
other important features of imitation have been discovered, such as the goal-
directedness or the meaninglessness of this behavior. These new fundamental
issues and principles which have been developed in experimental psychology are
described in the next section.

2.2 Imitation in Experimental Psychology

Studies in experimental psychology have shown several important behavioral
aspects of human imitative abilities and related functions. Central to the present
thesis are the principle of ideomotor compatibility, the distinction between goal-
directed and meaningless imitation, and the discrimination between the self and
the others. Definitions of these aspects and related experimental findings are
reviewed below.

2.2.1 The Ideomotor Principle

The ideomotor principle states that observing the movements of others influ-
ences the quality of one’s own performance (Greenwald, 1970; Brass et al., 2000;
Kilner et al., 2003; Heyes, Bird, & Haggard, 2005). This theory means that the
execution of a given action or gesture should be facilitated by a prior observation
of that movement. In contrast, the observation of a different movement should
produce interferences. In psychological terms, if a perceptual event is similar to
the response image that is used to control a response, then the perceived event
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should activate the response image and, hence, influence the initiation of the
response (Greenwald, 1970; Brass et al., 2000; Wohlschläger et al., 2003). This
principle, also referred as the common-coding theory, is tightly related to the
low-level forms of imitation reviewed above (Hommel, Musseler, Aschersleben,
& Prinz, 2001; Knoblich & Flach, 2001). It implies a motor resonance mech-
anism, through which the observation of an action performed by others may
activate, at least partially, the same motor control centers responsible for its
planning and execution (Greenwald, 1970; Hommel et al., 2001; Knoblich &
Flach, 2001). Consequently, action reproduction would become easier and un-
conscious and automatic imitative behaviors, which are sometimes referred as
the result of a motor contagion, may be observed (Greenwald, 1970; Gallese &
Goldman, 1998; Paccalin & Jeannerod, 2000; Blakemore & Frith, 2005). This
mechanism of motor resonance or motor simulation has already been suggested
to be used during behavioral tasks requiring motor imagery, which consists in
mentally simulating a movement without actually executing it (Jeannerod &
Decety, 1995). Interestingly, the timing at which these mental movements are
performed correspond to that at which real movements are executed (Jeannerod
& Decety, 1995). The link between this finding and the ideomotor principle, is
that they both suggest an involvement of visuomotor representations shared
by action observation and by extension, mental observation and actual motor
execution (Jeannerod & Decety, 1995; Gallese & Goldman, 1998; Porro et al.,
1996; Jeannerod, 2003).

Several studies involving an experimental stimulus-response paradigm have
measured the behavioral expression of the ideomotor principle (Brass et al.,
2000, 2001; Kilner et al., 2003; Chaminade et al., 2005; Bertenthal et al., 2006).
They experimentally confirmed the existence of an unconscious and automatic
tendency for imitation. For example, in the studies by Brass et al. (2000)
and Bertenthal et al. (2006), human subjects were asked to respond as fast as
possible with a movement of a specific finger to the presentation of different
stimuli. As shown in Figure 2.1a, the stimuli consisted of finger movements on
which a visual or symbolic cue was superimposed. The authors of these studies
showed that when the visual cue is the only relevant feature to compute the
finger response, the observed finger movement does interfere with the instructed
response (see Fig. 2.1b). An additional finding following from these studies, is
that the time course of the inhibition of the imitative automatic tendency was
different to that of the other types of cue. They concluded that visuomotor and
imitative processes may be mediated by two different control strategies (Brass et
al., 2000; Bertenthal et al., 2006). However, the exact cortical pathways through
which these control strategies are processes, as well as the mechanisms mediating
their interactions still remain unclear. Moreover, do these strategies recruit
only purely sensorimotor pathways, or are higher-level cognitive processes also
involved?

In a different setup, illustrated in Figure 2.1c, Kilner et al. (2003) instructed
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Figure 2.1: a) Examples of stimuli used in the experiment of Brass et al. (2000) who
investigated the influence of spatial and movement cues in the initiation of imitative
response. The baseline conditions only involved one of the possible cues. When the
spatial cue was located on the moving finger, this condition was considered as congru-
ent, and otherwise incongruent. b) The results of this experiment mainly showed that
responses to a movement cue are faster than to a spatial cue and that the movement
cue produces more interferences. c) Experimental setup of the interference paradigm
proposed by Kilner et al. (2003) where human subjects were requested to perform hor-
izontal or vertical movements while observing either another human or a robot arm
performing similar or different movements. d) The recorded trajectories in all condi-
tions revealed a clear effect of ideomotor compatibility. Congruent observed-executed
movement pairs produce less variance in the executed movements than incongruent
pairs. Moreover, observing a robot arm does not lead to such interferences. (Adapted
from Brass et al. (2000); Kilner et al. (2003))
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subjects to perform vertical and horizontal arm movements while simultane-
ously observing a human executing similar movements. They showed that when
observed and executed movements are congruent, i.e. similar, the variability of
the recorded movements is smaller than during conditions where the movements
are incongruent. Additionally, they also showed that the observation of a robot
arm performing the same motions does not reproduce this interference effect,
suggesting the influence of a mechanism specialized for the processing of biolog-
ical motions (see Fig. 2.1d). These results clearly suggested that the reported
movement interferences should be caused by cortical areas responsible for motor
control, but which also receive sensory signals associated with the perception
of others’ movements. Consequently, one may wonder how multisensory signals
are integrated within these shared representations and also how interferences
may emerge from these multisensory interactions.

2.2.2 Meaningless and Goal-Directed Imitation

Another important behavioral aspect is that imitation has been shown to be
primarily goal-directed, especially in young infants (Meltzoff, 1995; Bekkering
et al., 2000; Wohlschläger & Bekkering, 2002; Gergely & Csibra, 2003). This
emphasizes the fact that, when imitating, copying the goal of an action seems
to be the primary aim, whereas the means of its achievement is secondary.
However, when the goal of an observed action is absent, a good reproduction
accuracy of meaningless gestures is still observed (Wohlschläger & Bekkering,
2002; Heyes & Ray, 2004; Rumiati et al., 2005).

For instance, in an experiment involving the imitation of finger movements,
Wohlschläger and Bekkering (2002) requested subjects to simply imitate what
they were seeing. The stimuli shown in Figure 2.2a, consisted of the left and
right hands of an experimenter placed next to each other on a table, in a closed
posture but with the index fingers extended. As a movement to imitate, one
of the two fingers executes a tapping motion, which is either strictly vertical
or which crosses the midline to end under the other finger. Wohlschläger and
Bekkering (2002) also devised two additional conditions: and one with and one
without an object-like cue located below each finger. Compared to the first
condition, the second involved marks placed on the table, which were consid-
ered as the object cues. The results of their experiment, reported in Figure
2.2b, showed that, when there are no objects (no marks), gestures are generally
well reproduced, and that the reaction times between the two finger conditions
(involving a crossing trajectory or not) are fairly equivalent. However, with the
object cues, this tendency changed. More movement errors were observed and
the reproduction of what they called the goal of the action, i.e., reaching the
corresponding mark on the table, was favored against the exact reproduction of
the movement. Consequently, one may be interested in knowing which cognitive
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Figure 2.2: a) Set of movements to imitate that Wohlschläger and Bekkering (2002)
used in an experiment investigating the effect of goals in imitative strategies. b) Their
results indicate that when object-goals are present, they facilitate the initiation of the
movement response as compared to conditions without objects. This suggests a cog-
nitive switching to a goal-directed imitative strategy. Indeed, more errors in the exact
reproduction of the observed movements were reported when the latter movements are
contralateral, i.e., are not the most effective movements to reach the goal. c) Another
experiment reported by Wohlschläger and Bekkering (2002) is shown, where children
were asked to imitate the illustrated movements performed by an experimenter. d)
Clear mirror imitative tendencies were observed, in that most of the movements per-
formed with the left hand were reproduced with the right hand, and vice-versa. More-
over, a goal-directed strategy was also observed. Indeed, children also had a tendency
to imitate contralateral ear-reaching movements with ipsilateral gestures.

processes are at the origin of this natural bias toward the reproduction of goals.

Other behavioral findings also provide causal evidence for the dominance of
goal-directed imitation. During the observation of movements, humans tend to
primarily fixate on the end effect of the demonstrator. More importantly, a bias
toward the end-point of the trajectory, if predictable, was reported (Mataric &
Pomplun, 1998; Flanagan & Johansson, 2003). Thus, an attentional mechanism
seems to limit the information conveyed by the demonstrator’s movements by
providing the brain with the most relevant part of the observed gestures, i.e.,
the goal. Since the focus is on the end-point of the trajectory and, by extension,
on the goal, this may explain why goal-directed imitation sometimes appears to
overshadow the means of achieving goals (Heyes, 2001). Indeed, the imitation
of the goal of an action is easier than to copy the complete means of achieving
it. In addition, the former strategy also avoids the cognitive problem of being
capable of corresponding the gestures of others into self movements since the
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only relevant aspect of the action to reproduce is its interaction with the goal
(Nehaniv & Dautenhahn, 2002).

There is currently a debate regarding whether imitation of meaningless and
goal-directed gestures are really mediated by the same mechanism in humans,
i.e., by a mirror system which has been suggested to be a shared represen-
tation recruited by both action observation and motor execution. Indeed, as
will be described in more details further in Section 2.3, the activity of that
neural complex in monkeys, which were not reported to imitate the means of
observed actions, correlates only with goal-directed actions (Rizzolatti, Fadiga,
et al., 1996). On one hand, its is argued that the human mirror system extends
that of its ancestor by receiving additional connections from brain regions sub-
serving the observation of others’ body movements and those representing self
motion. This extension may allow the mirror system to be more flexible through
multiple levels of granularity (Lyons et al., 2006). Hence, the reproduction of
meaningless gestures becomes possible, and by extension, the means of per-
forming actions. This hypothesis was strengthened by a comparative study of
imitation in chimpanzees and human children (Horner & Whiten, 2005), where
the subjects looked at an experimenter removing a salient object from a puzzle-
box though a series of actions, some of which were necessary, some of which
were not. The experiment showed that human children have an overwhelming
tendency to imitate all the observed actions, whereas the monkeys imitate only
the useful actions to open the box so as to reach the goal. Human children thus
imitated all the particular means of attaining the goal (Whiten et al., 1991;
Horner & Whiten, 2005). In addition, in the experiments of Wohlschläger and
Bekkering (2002) which was previously described, the behavioral results showed
that the effect of the goal had only a facilitory effect on reaction times as com-
pared to the case where no goal was present. Since no clear interferences were
observed, this suggests a single mechanism for imitation of both meaningless
and goal-directed movements.

On the other hand, recent findings suggest that the processing pathways
for meaningless and goal-directed imitation are separate (Stürmer et al., 2000;
Rumiati et al., 2005). In an experiment contrasting the facilitation of imitative
responses to static and moving movement stimuli of the hand, Stürmer et al.
(2000) investigated whether the imitation of gestures and postures were medi-
ated by different cognitive mechanisms. They effectively showed a significant
difference in response reaction times to the processing of both types of stimuli.
In order to link this finding with the possible distinction between the process of
imitation of meaningless and goal-directed gestures, one may consider that static
images represent final postures corresponding to goals, while videos of moving
hands would correspond to the means of performing actions. Consequently, as
suggested by Rumiati et al. (2005), observing a qualitative difference between
the imitative processing of static and moving hands may reveal the existence of
different cognitive strategies for goal-directed and meaningless imitation.
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2.2.3 Specular and Anatomical Imitation

Another interesting issue concerns the human natural tendency for mirror
or specular imitation with respect to anatomical imitation, which has been ob-
served in several behavioral experiments (Bekkering et al., 2000; Wohlschläger &
Bekkering, 2002; Koski, Iacoboni, Dubeau, Woods, & Mazziotta, 2003; Heyes &
Ray, 2004). When a demonstrator is facing a person, and executes a movement
to imitate, the imitator shows a tendency to mirror the observed movements,
i.e., he/she uses the left hand to imitate a movement performed with the right
hand and vice-versa (Bekkering et al., 2000; Heyes & Ray, 2004). An experiment
was conducted by Wohlschläger and Bekkering (2002), where they instructed
children to imitate the movements of an experimenter facing them. These move-
ments are shown in Figure 2.2c. Their results clearly showed the great influence
of the mirror imitative tendency (see Fig. 2.2d). A common explanation for
this effect to occur is based on the spatial compatibility between the visual lo-
cation of the stimulus and that of the hand. This effect has been known for
a long time as the Simon effect (Simon et al., 1981; Eimer, Hommel, & Prinz,
1995; Heyes & Ray, 2004). However, the intriguing point here is that the Simon
effect is generally not associated with imitation. Indeed, imitation is supposed
to involve different cortical mechanisms than those involved in classical visuo-
motor transformations (Brass et al., 2005). Thus, there should be a cognitive
mechanism mostly devoted to imitation which exhibits a preference to mirror
imitation (Koski et al., 2003).

During goal-directed imitation, in contrast to the imitation of meaningless
gestures, the mirroring tendency slightly differs. For instance, when reaching
for objects, a bias toward the use of the dominant hand is mostly observed
(Wohlschläger & Bekkering, 2002). But still, it seems that the selection process
of the effector to use considers simultaneously the hand which is the closest to the
target, the dominant one and that which mirrors the demonstrator (Bekkering
et al., 2000).

2.2.4 Discrimination between the Self and Others

The final psychological aspect which is considered here concerns the prob-
lem of recognizing the self from the others (Jeannerod, 2003), an ability which
can already be observed in neonates (Rochat & Hespos, 1997). In addition to
the implications of such a process in almost pure philosophical issues such as
the mechanisms of consciousness, it is the focus of several hypotheses that are
raised from the study of imitation (Decety & Sommerville, 2003; Jeannerod,
2003). Indeed, the most common hypothesis related to the mechanisms of im-
itation concerns the existence of a neural substrate shared by the mechanisms
of movement perception and motor execution. This substrate has been shown

22



a) b)

E: Experimenter’s hand
P: Subject’s hand

Figure 2.3: a) The experimental setup proposed by Van Den Bos and Jeannerod
(2002) is shown, where the capacity of humans to recognize their movements in am-
biguous situations was tested. Two hands wearing identical gloves were displayed on
a screen. One was that of the subject, and the other was that of the experimenter.
The location of the hand was varied by a rotation of the displayed image. Subjects
and experimenter were requested to execute a given finger movement simultaneously.
After the completion of the movements, subjects had to determine the ownership of
a hand selected by the experimenter. b) The results of this experiment indicate that
when the movements of both hands are different, the task is always correctly solved.
However, for different movements, errors were observed, which did also increase as a
function of the amount of rotation of the display.

to be similarly activated when observing an action and executing that same
action1. This calls for an explanation as to how one may keep track of the
ownership of the "mentalized" information, especially when self execution and
observation of others occur simultaneously. Are there interferences? And if
yes, how does the brain minimize the conflicts coming from these contradictory
sources of information?

Current findings consider two forms of sensory cues (Van Den Bos & Jean-
nerod, 2002; Decety & Sommerville, 2003; Haggard & Clarke, 2003; Jeannerod,
2003). First, when one has to recognize one’s own limb, body cues such as
the spatial and visual attributes of the limb are primarily used. This match-
ing of visual, tactile and proprioceptive signals originating from a specific body
part constitutes a multimodal sensory image of the body, often referred to as
the body image (Gallagher, 2000; Holmes & Spence, 2004). An experiment in-
volving a rubber arm positioned in place of a subject arm hidden by a screen,
showed that, until a certain level of discrepancy between the position of the
fake and of the real arm, humans tend to perceive an illusory touch at the lo-
cation of the stimulation of the rubber arm rather than at that of their real
arm (Botvinick & Cohen, 1998; Farné, Pavani, Meneghello, & Ládavas, 2000).
These studies showed that self-recognition relies primarily on visual cues. Vi-
sion dominates over proprioception. However, experimental results indicate that

1at least in monkeys. In humans this property was derived from brain imaging studies
in homologous areas showing a equivalent activation during observation and execution of an
action (Iacoboni et al., 1999).
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when these attributes are ambiguous, one can rely on action or movement cues
such as the time course of movement, velocity, and acceleration (Van Den Bos
& Jeannerod, 2002; Jeannerod, 2003). In an experiment depicted in Figure
2.3a, subjects were shown two hands wearing identical gloves on a screen (Van
Den Bos & Jeannerod, 2002). One hand was their own whereas the other was
that of the experimenter. This setup also allowed variation of the visual lo-
cation of the hands on the screen. The subjects were requested to perform a
finger movement simultaneously with the experimenter and then to determine
the ownership of a given hand. The results of this experiment, reported in
Figure 2.3b, clearly showed that when the movement of both hands was dif-
ferent, subjects correctly identified the ownership of a given hand. However,
when the movements were identical, the hands were often misattributed. This
misattribution also increased when the discrepancy between the real position
of the hand and its corresponding location on the screen was increased. Nev-
ertheless, the errors where generally below the level of chance, indicating that
humans can still recognize their movements despite visual ambiguities. A mech-
anism has been suggested whereby an internal prediction of the consequences
of a motor act performed by neural processes associated with motor imagery, is
compared with real sensory outcomes. Depending on their similarity, the brain
may determine the ownership of the observed movement (Frith, Blakemore, &
Wolpert, 2000; Decety & Sommerville, 2003; Wolpert et al., 2003). Although
this mechanism of disentangling sensory inputs corresponding to the self and to
the others is efficient in well-being people, when deficient, it can produce serious
perturbation in the representation of the self (Blanke & Mohr, 2005). Never-
theless, in normal conditions, interferences at the level of shared representations
still occur even if one is clearly conscious of self with respect to others (Kilner
et al., 2003; Chaminade et al., 2005). This interference effect builds a clear
bridge between the mechanisms of self perception and the ideomotor principle
previously described. Observing the movements of others influences the quality
of one’s own performance (Greenwald, 1970; Brass et al., 2000). This link be-
tween self perception and imitation consequently raises questions regarding the
neural mechanisms which allow humans to disambiguate sensory signals related
to either the self or others. How could a neural model be capable to implement
the sensory prediction of one’s own movements and then suppress others-related
incompatible sensory feedback. Moreover, how would such a model account for
the processes of self-recognition as well as for the interferences observed during
simultaneous action observation and execution?

Before addressing, along this thesis, the research questions raised though this
review of the data related to imitative behaviors as reported by experimental
psychology, next section will present experimental results gathered at at the
brain level which will allow to ground the modeling studies developed here on
a strong biological basis.
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2.3 The Neurophysiology of Imitation

Neural correlates of imitation as well as other cognitive abilities have been
gathered by a large set of experimental studies which used different brain record-
ing techniques. In monkeys, data are principally collected through single-cell
recordings and more recently, with multi-electrode arrays. These methods allow
monitoring of the activity of neurons in vivo while the animal is performing
various tasks, and then to correlate neural responses with specific controlled
parameters of the task. In humans, since such invasive techniques are rarely
possible, lesions studies and more recently, brain imaging techniques allow the
identification of the neural networks involved during specific behaviors. Positron
Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI)
and electro-encephalography (EEG) are the most common, non-invasive tools
that are adopted today. They allow the visualization of which brain areas which
are activated during given behavioral tasks, and hence they are useful tools to
determine the functions of cortical regions. A last technique used on both species
is known as Transcranial Magnetic Stimulation (TMS), which generates a high
energy magnetic field focused on a precise, targeted brain area. The consequence
of such a stimulation is an external modification of the neural activity, which
usually produces observable alterations of normal behavior. The combination
of the data gathered through cell recordings in monkeys and brain imaging
in humans is expected to provide a coherent and global picture of the neural
mechanisms of the human cognition. However, one must still pay attention to
the homologies and differences across these kin species (Arbib, 2002; Arbib &
Bota, 2003). This work clearly relies on a strong similarity between the neural
processes occurring in monkeys and humans and hence assumes, except when
explicitly mentioned, that the neurophysiological findings obtained in monkeys
also apply to the human brain.

2.3.1 The Cognitive Processes in the Brain: An

Overview

This section presents an overview of the principal findings related to the
neural mechanisms underlying human imitative abilities. But before going into
a detailed description of the neural correlates of imitation and related functions,
a quick summary will first introduce the global functional organization of the
primate brain.

Functional Organization of the Primate Brain

The brain is the principal component of the nervous system. It can be delin-
eated into several subparts according to functional and anatomical properties.
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Figure 2.4: Lateral view of the human brain. The cerebral cortex comprises four major
lobes which can in turn be split into areas responsible for specific sensory and motor
processes.

As illustrated in Figure 2.4, the most prominent part of the central nervous sys-
tem (CNS) is the cerebral cortex whose functionalities will be discussed at length
further in the text. Another important nervous center is the cerebellum, which
participates in sensorimotor control and in learning of movements. Located
ventrally and between the two hemispheres of the cerebral cortex, the limbic
system is composed of several sub-regions such as the hippocampus, the basal
ganglia, and the hypothalamus. These regions are suggested to be the locus
of the processing of emotion, motivation, learning by reinforcement, long-term
memory, and the representation of space (Doya, 1999; Redish, 1999; Hirosaka,
Nakamura, Sakai, & Nakahara, 2002). Finally, the sensorimotor relay between
the spinal cord and the brain is the thalamus, which is involved in the routing
of sensory and motor information to and from the cerebral cortex, the limbic
system and the cerebellum.

Each hemisphere of the cerebral cortex can be divided into four principal
lobes: the occipital, parietal, temporal and frontal lobes. Each of these lobes is
involved in different cognitive processes and can also be split into more specific
sub-regions. The occipital or visual cortex, located in the posterior part of the
cerebral cortex, is primarily concerned with the analysis of visual information.
Its neighbors are the parietal lobe, located dorsally, and the temporal lobe, lo-
cated ventrally. The temporal lobe can be primarily considered as an extension
of the visual cortex, in the sense that it also processes visual information. It
is however, also involved in higher cognitive abilities such as the recognition of
objects and people present in the environment. Next, the parietal cortex in-
tegrates and processes multisensory information such as vision, proprioception,
audition, taste, and olfaction. These sensory modalities are first processed sepa-
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rately along the borders of the parietal cortex. As information flows toward the
center of the lobe, a multisensory association area merges these sensory inputs
to form a coherent view of the body and its environment. Finally the frontal
lobe can be divided into two main subregions, namely the motor and prefrontal
cortices. While the motor cortex, located in the posterior part of the frontal
lobe near the parietal cortex is in charge of the control of movements, the pre-
frontal cortex is involved in higher cognitive functions such as the control of the
sensorimotor processes occurring within the other lobes, planning, reasoning,
and top-down attention.

This global view of the brain is however too simplistic in order to have a
detailed view of the neural mechanisms underlying human cognition. Therefore,
the next sections will provide a more precise description of the major streams
of brain information processing as well as the functions of the cortical areas
which are relevant for the present study on the neural mechanisms underlying
imitation (See Figure 2.5). Indeed, the goal of this section is not to provide an
extensive review of the current knowledge of the neural processes occurring in
the whole cerebral cortex and lower brain regions. Therefore, this review only
concentrates on the main cognitive prerequisites of imitation, which are:

• the visual perception of the interactions between people and objects,

• the visual perception of objects for self action,

• the integration of multisensory information at the core of the coherent
view of the self, i.e., the body schema,

• the planning and production of movements

• the cognitive control of specific parts of the previously mentioned systems
for normal behavior.

Just before beginning this review with the description of the perception of
visual information, an important point must be clearly stated. This work is
primarily concerned with the neural processing occurring at the cortical level.
Therefore, although this work acknowledges the fundamental role of the other
regions in motor, spatial and visual processing, the following review will not
explicitly address the precise neural activity patterns found within these re-
gions. Nevertheless, if the implication of a given region is fundamental for a
clear understanding of the mechanisms of a specific cortical process, it will be
mentioned.

Visual Perception

The processing of visual information is one of the fundamental abilities of
brain. Central to imitation, the brain must extract the relevant visual features
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Figure 2.5: Functional organization of the cerebral cortex: On the lateral view of a
macaque brain, the principal brain areas involved in the sensorimotor process of visual
perception for action, motor control, recognition of actions performed by others, and
by extension, imitation are shown. (Adapted from Rizzolatti and Luppino (2001);
Sakagami et al. (2006)).

to identify objects, people and their respective interactions. Based on this inter-
nal sensory representation of the environment, imitative responses to observed
actions can then be computed. However, imitation does not only rely on visual
information, but still, visual perception is of critical importance.

First, visual information enters the brain through the eyes. The sensory
receptors distributed on the retina transform light colors and intensities into
electrical signals which are further be processed by the brain. Relayed by the
lateral geniculate nuclei (LGN) in the thalamus, visual information then enters
the cerebral cortex through the primary visual cortex (V1). The visual cortex
is composed of several areas (Gattass et al., 2005). In the occipital lobes areas
V1, V2, V3 and V4 have mainly been shown to process visual information by
extracting, through increasing levels of complexity, orientations, contours, struc-
tures of motions, and patterns of colors (De Yoe & Van Essen, 1988; Goodale
& Milner, 1992). These features are represented in retinotopic maps respecting
the topography of the image. Moreover, along the visual pathway, the receptive
fields of the neurons increases in size, indicating that, as visual information flows
into the cortex, the neurons encode more and more complex visual features. For
instance, whereas V1 neurons have been shown to detect local orientations of a
very small subset of the visual scene, those of area V4 can specifically respond
to the orientation of objects of larger size, such as bars of several degrees on the
visual field (De Yoe & Van Essen, 1988; Goodale & Milner, 1992).

After these few processing stages, the visual processing pathway splits in two
different routes, one directed toward the temporal cortex and the other toward
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the parietal cortex. These pathways are suggested to process different aspects of
visual information. Initially believed to separately process forms and motions,
the ventral and dorsal streams were called the "what" and the "where" streams
(De Yoe & Van Essen, 1988). However, following from new discoveries, they
were renamed as the "what" and the "how" streams, respectively (Goodale &
Milner, 1992). Basically, the dorsal "how" stream is suggested to process visual
information useful for action, in the sense of how objects could be manipulated,
where they are, and in which direction they move (Johnson, Ferraina, Bianchi,
& Caminiti, 1996). In contrast, the ventral "what" stream is assumed to be
the locus of the recognition of objects, which allows the precise identification
of what is present in the visual field (Goodale & Milner, 1992; Booth & Rolls,
1998). These both pathways are suggested to be involved in the cognitive process
of imitative behaviors. While the latter stream would allow, for instance, to
identify people and the way they interact with objects (Perrett, Harries, Bevan,
et al., 1989), the former would rather make possible the correct reproduction
of actions by monitoring visually their execution (Johnson et al., 1996). In the
next paragraphs, a description of the general neural properties found within
these streams is given.

Recognition of Bodies and Objects: The Ventral "What" Stream

As mentioned above, along the ventral pathway, visual information flows
from the primary visual cortex to the temporal lobes. Of particular interest, the
temporal lobes includes the inferotemporal area (IT) and the superior temporal
sulcus (STS). IT is a pure visual area which is devoted to the recognition of
objects and faces (Booth & Rolls, 1998; Tsunoda, Yamane, Nishizaki, & Tanifuji,
2001; Afraz, Kiani1, & Esteky, 2006). By direct projections to the frontal areas
partly responsible for reasoning, IT provides useful information about the visual
environment for high-level cognitive control. In the posterior part of IT, neurons
were shown to be sensitive to one or more specific features of visual stimuli such
as size, shape, color, orientation, and direction of motion (Gross, Bender, &
Rocha-Miranda, 1969). While moving further toward the most anterior part
of this region, IT contains populations of neurons that exhibit an increasing
sensitivity to complex combinations of visual features forming objects and faces
(Tsunoda et al., 2001; Afraz et al., 2006). These neural responses to visual
objects where also found to be encoded in different reference frames. While
some neurons fire for a specific set of features of an object (snapshot neurons),
others respond invariantly to its orientation, size, position and distance (Booth
& Rolls, 1998). These patterns of activity seem to respectively correspond to a
viewer-centered and an object-centered frame of reference.

Another important brain area responsible for visual perception is located
on the dorsal part of the inferotemporal cortex, namely the superior temporal
sulcus (STS). The neural activity patterns within this brain region receiving
projections from IT and from the primary visual areas, has been shown to cor-
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Figure 2.6: Response of STS neurons to several types of stimuli are shown where the
data reported on each panel correspond to a different cell. The first row shows neurons
sensitive to face having a) a preferential tuning to front view, and b) an invariant
response across the depicted orientations. c-d) On the second row, similar activity
patterns are displayed by other cells sensitive to bodies. e) STS neuron sensitive to
the observation of an arm extending to the right of the monkey. f) Another neuron
sensitive to arm extension toward the animal. The shoulder and head orientations
have a significant effect on the firing of that neuron, which shows highest activity
when the movement is directed toward the observer. (Adapted from Ashbridge et al.
(2000); Oram and Perrett (1996)).

30



relate with the recognition of biological motions and body postures. STS is
the primary locus for the perception of actions in visual terms. Importantly, as
illustrated in Figure 2.6, there are cells sensitive to the sight of complex body
movements such as walking, articulation of body parts and even goal-directed
interactions with objects (Perrett, Harries, Mistlin, & Chitty, 1989; Perrett et
al., 1990; Oram & Perrett, 1996; Jellema, Maassen, & Perrett, 2004). The sen-
sitivity of these neurons seems to be encoded in various frames of reference,
from purely viewer-centered to goal-centered representations. The majority of
the STS cells are sensitive to viewpoint, but object-centered neurons, whose
activity is invariant with respect to the orientation of the observed body or
object, were also reported (See Figure 2.6). Such invariant representation may
allow an abstract representation of objects, postures, movements and actions.
This explain why STS has been suggested to be the locus of the transformation
of visual information related to biological cues through several stages (Perrett,
Harries, Mistlin, & Chitty, 1989). Next, when considering the neural responses
to goal-directed actions, different groups of neurons have been reported to en-
code different type of hand actions such as grasping, dropping and tearing.
These neurons also differentiate between mimed actions and real ones showing
a greater activity in the latter condition (Baker, Keysers, Jellema, Wicker, &
Perrett, 2001). Indeed, the activity of some STS neurons has been reported to
be context-dependent. For instance, a neuron sensitive to the sight of walking
may keep firing even if the walking person goes behind a wall, but will not fire
to the sight of the wall alone (Baker et al., 2001). This suggests a mechanism
which allows the neurons within STS to complete missing visual information.
This finding produced a change in the way STS neurons were considered. Rather
than being purely visual neurons, they also exhibit conditional responses in the
sense that the same visual stimulus does not always elicit the same response.

Another non purely visual property has also been reported within several
populations of STS cells. It concerns their responses to the observation of self
generated movements or movements performed by others. While the majority
of these neurons fire invariantly according to the ownership of the observed
movement, groups of cells within the upper bank of STS (the dorsal anterior
part) do not respond to the sight of one’s own motions (Hietanen & Perrett,
1993). This finding was first suggested to reflect the sensory abilities of these
neurons to recognize the specific visual aspect of the arm of the monkey they
belong to. However, a further study using computer generated visual gratings
which motion was either induced by an experimenter or the monkey, showed
that these cells were activated only when the motion of the visual stimulus was
not predictable, i.e., when it was induced by the experimenter (Hietanen &
Perrett, 1996). Corroborated by the presence of anatomical connections with
parts of the parietal and frontal lobes reported to represent the body schema
of the animal (Holmes & Spence, 2004), these findings highly suggest that a
mechanism can predict the visual consequences of self-executed movements and
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hence inhibit the responses of specific neurons in STS (Keysers & Perrett, 2004).

To summarize this section, the ventral visual stream processes visual infor-
mation for the recognition of objects, bodies, and body parts. Through the
combination of these internal representations, it is capable of determining their
spatial relationships. As such, it can also recognize body postures and move-
ments, and even the interactions between people and objects. These highly spe-
cialized representations are thus encoding visual information in various reference
frames, including purely viewer-centered, goal-centered and invariant frames of
reference. Finally, the dorsal anterior part of STS has also been shown to be
not a purely visual area. Its responses also reflect the presence of a predic-
tive mechanism which can inhibit visual responses which are attributed to self
generated movements. These predictive abilities are supposed to arise from the
parietal lobe which roles include the representation of the body in space and the
processing of visual information for self-action. This latter aspect is thought to
be processed along the second visual stream, namely the dorsal "how" stream.

Recognition of Objects for Action: The Dorsal "How" Stream

The multisensory relay of visual information for the reaching and the ma-
nipulation of objects was reported to be located in the posterior parietal cortex
(PPC), which is known to be composed of many sub-regions subserving differ-
ent functions. Its dense and selective reciprocal connectivity with the premo-
tor cortex can explain its involvement in the control and representation of the
large palette of possible arm and hand actions (Wise, Broussaoud, Johnson, &
Caminiti, 1997; Johnson et al., 1996; Burnod et al., 1999). Moreover, its recip-
rocal connections with the somatosensory and the visual cortices make the PPC
a good candidate for the representation of the body in its environment (Stein,
1989; Holmes & Spence, 2004).

Considering the visual areas for action, the dorsal "how" stream goes through
the intraparietal sulcus (IPS) (Andersen, Asanuma, Essick, & Seigel, 1990;
Goodale & Milner, 1992). Close and within IPS, several areas are involved
in different specific functions. They are the cIPS, located in the caudal part of
IPS, MIP, the medial intraparietal sulcus, VIP, the ventral intraparietal sulcus,
LIP, the lateral intraparietal sulcus, and AIP, the anterior intraparietal sulcus
(Stein, 1989; Johnson et al., 1996; Wise et al., 1997). Except the cIPS, all these
areas are multisensory structures combining vision and the information related
to the body state. Indeed, their putative functions related to visual monitoring
for action imply a tight coupling with the perception of the animal own body
(Johnson et al., 1996; Holmes & Spence, 2004).

At the beginning of the IPS, area cIPS receives projection from the early
primary visual area (De Yoe & Van Essen, 1988; Goodale & Milner, 1992), and
has been shown to process the three dimensional analysis of objects. Neural re-
sponses correlate with the various spatial features of objects including their po-
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sition, distance, orientation, principal axes and geometric shape (Sakata, Taira,
Husunoki, Murata, & Tanaka, 1997; Sakata et al., 1999). cIPS then further
sends direct connections to area AIP. Similarly to cIPS, the activity patterns
of AIP neurons are also object specific, and more importantly are tuned to the
geometrical features of object shape for manipulation, namely the affordances
of objects (Sakata et al., 1997; Fagg & Arbib, 1998). This area also exhibits
visual responses to interactions between one’s own hands and objects (Sakata et
al., 1998). Following from these findings and the reported connectivity of this
area with motor centers for grasping in the anterior part of the ventral premotor
cortex (Wise et al., 1997), AIP has thus been suggested to be an fundamental
region for the grasping and the manipulation of objects (Sakata et al., 1997;
Fagg & Arbib, 1998).

In parallel to this visual pathway for representing objects for manipulation
and grasping in viewer-centered and goal-centered reference frames, areas LIP,
MIP and VIP represent also fine combinations of visual and proprioceptive infor-
mation for action in multiple frames of reference (Andersen et al., 1990; Johnson
et al., 1996; Colby & Goldberg, 1999). In a reductionist view, these area were
reported to code, respectively, the far visual space, the space at reaching dis-
tance, and the ultra-near space (Colby & Goldberg, 1999). In the posterior part
of IPS is located area LIP, which represent the spatial location of salient objects
(Gottlieb, Kusunoki, & Goldberg, 1998). Concordant with the hypothesis of the
presence of a saliency map in the parietal cortex (Itti & Koch, 2001), LIP is sug-
gested to be the locus of attentional mechanisms (Gottlieb et al., 1998), to hold
a visual memory of potential targets in retinocentric coordinates (Andersen,
Snyder, Bradley, & Xing, 1997; Colby & Goldberg, 1999), and to reflect a deci-
sional process for target selection (Platt & Glimcher, 1999; Shalden & Newsome,
2001). In turn LIP projects to both areas MIP and VIP. Similarly to LIP, MIP
also encode the location of visual targets (Eskandar & Assad, 1999). However,
while LIP neurons have been reported to encode primarily targets in pure visual
terms for gaze control through saccadic eye movements (Snyder, Batista, & An-
dersen, 1997; Batista, Bruneo, Snyder, & Andersen, 1999; Shalden & Newsome,
2001), MIP neurons are more tuned to the direction of hand movements in visual
coordinates which would allow to reach the target (Eskandar & Assad, 1999).
Finally, area VIP is also concerned with the control of hand and eye movements
in visual terms. However, in contrast to area LIP from which it receives pro-
jections, it encodes target in a more head-centered coordinate frame, or at least
in a combination of eye- and head-centered frame of reference (Snyder et al.,
1997; Batista et al., 1999; Bremmer, Graf, Ben Hamed, & Duhamel, 1999). In
addition, complimentarily to area MIP, the firing of VIP neurons has also been
shown to correlate more with the location of the stimulus location rather than
to that of the hand (Eskandar & Assad, 1999).

To finish this review of the neural processing in the dorsal "how" stream, one
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important point is that the transformations across the frames of reference oc-
curring in these areas and in their neighboring regions do contribute to the pro-
cess of transferring purely visual information into multisensory representations
which are the most appropriate for the control of motor responses. Through
this distributed representation within different frames of reference, the poste-
rior parietal cortex allows the parallel computation of sensorimotor strategies
for eyes movements toward target objects, for their reaching and their manip-
ulation such as grasping movements. Nevertheless, although the role of this
cortical pathway seems clear, the neural mechanisms mediating its associated
computational processes are less obvious. This thesis will attempt to provide
some insights about this issue but more details about the research questions
addressed in this work will be given at the end of this section.

Multisensory Representation of the Body in the Parietal Cortex

In the previous section, the neural correlates of the visual perception of ob-
jects for action were addressed. Since the knowledge of where one’s own body
parts are located in space is fundamental to correct plan any execution of move-
ments, the brain must hold a internal representation of the body it belongs to,
namely the body schema. A current view in neuroscience suggests that the
body schema is an emergent property of a network of interacting cortical and
subcortical centers, where each of these areas involves multisensory representa-
tions of body parts and their relationships in various reference frames. Each
of these used reference frames is not arbitrary, but rather appropriate to the
sensory inputs their corresponding representations receive, and to the behav-
ioral responses they do control (Rizzolatti, Luppino, & Matelli, 1998; Holmes &
Spence, 2004; Avilllac, Denève, Olivier, Pouget, & Duhamel, 2005). The cortical
areas suggested to participate in such a body representation are widespread in
both parietal, motor and premotor cortices (Stein, 1989; Graziano, Cooke, &
Taylor, 2000; Holmes & Spence, 2004). While the description of the properties
of the motor related regions will be given later in this chapter, the following
paragraphs review the neural correlates of such internal representations of the
body and space in the parietal cortex. As mentioned earlier, the emergence
of the body schema implies a combination of sensory inputs corresponding to
different modalities. Although auditory and olfactory and taste signal are ac-
knowledged to be part of this process, the present discussion will only consider
the proprioceptive, tactile and visual modalities, as they are those which are
the most involved in imitation.

Proprioception

Proprioception is the sensory input driving the kinesthetic sense of the body.
It allows the brain to know where each limb is located without visual feedback.
Human sense of kinaesthesia have been shown to be mediated by muscle spin-

34



a)

b)

c) d)

Figure 2.7: Neural basis of proprioceptive representations. a) Measured response of
afferent nerves of muscles acting around the hip joint of a human subject, while the leg
was passively moved in eight locations around a neutral rest position. Each light arrow
corresponds to the response of an afferent nerve (arrow amplitude) which corresponds
to a unique muscle exerting a force in a specific direction (arrow direction). The
dark arrow represent the summation of the contribution of each afferent nerve. It can
faithfully represents the actual position of the limb. b) Response of a muscle afferent
of the cat leg to different passively moved leg positions on the horizontal plane. This
afferent shows a sensitivity for a specific preferred position of the leg. c) Response
of a cerebellar neuron sensitive to the limb position of a rat. A plane can be fitted
to the neural response, showing a linear relationship between the cell activity and the
limb position. d) Response of a neuron in the motor cortex to the arm position of a
monkey. The darker is the dot, the stronger is the neural response. A similar linear
relationship can be observed. (Adapted from Kettner et al. (1988); Roll et al. (2000);
Casabona et al. (2004)).

dles, which are sensory receptors sensitive to the position, velocity and forces
applied to body joints (Proske, Wise, & Gregory, 2000; Cordo, Flores-Vieira,
Verschueren, Inglis, & Gurfinkel, 2002; Ribot-Ciscar, Bergenheim, Albert, &
Roll, 2003). For example, as shown in Figures 2.7a and b, during passive move-
ments of the hip, the joint activities of the spindles among the muscles acting
around that joint can provide a robust estimator of the position of the leg (Ribot-
Ciscar et al., 2003). During active movements, the spindles activity have been
shown to be more sensitive to the limbs velocity, hence providing a distributed
code of the direction of movements (Proske et al., 2000).

The information conveyed by the muscle spindles is relayed by the spinal
cord to the primary somatosensory cortex (SI) (Prud’homme & Kalaska, 1994).

35



The neurons in this brain region are somatotopically organized, forming a map
which follows the well known sensory homonculus. Along the medio-dorso-to-
ventral axis of SI, the representation of the legs can first be found, followed by
that of the body, arms, hands and finally of the head. The size of the topo-
graphic map of a specific body part corresponds to the actual density of sensory
receptors located within this body part (Kandel & Jessell, 1991). Considering
now the representation of limb location and joint orientation, SI neurons were
mainly shown to be sensitive to the movements of the limbs and to be tuned to
movement direction and to arm posture (Prud’homme & Kalaska, 1994; Tillery,
Soechting, & Ebner, 1996). This indicates that sensations of movement and
position are represented in an overlapping and distributed manner in SI. It was
also reported that the firing patterns related to arm position varied monotoni-
cally with its spatial location, reaching the extremum values at the boundaries
of the workspace. Similar properties do also apply to the local orientation of
limb joints (Tillery et al., 1996). As shown in Figures 2.7c and d, it is worth
noting that similar representations coding for the arm position in space can also
be found in motor areas such as the primary motor cortex and the cerebellum
(Kettner et al., 1988; Casabona et al., 2004).

Another somatosensory cortical area is located ventrally to SI, from which
it receives projections, namely SII. SII neurons exhibits similar firing properties
to those in SI, but it plays a more critical role in the tactile processing of objects
(Fitzgerald, Lane, Thakur, & Hsiao, 2006). Interestingly, fMRI studies showed
that, in addition to its sensitivity to touch, this area might also possess complex
visual properties. Indeed, seeing someone else being touched also activates SII,
as if one had been directly touched (Keysers et al., 2004). In addition to the
direct connectivity between SI-II and the motor control centers in the frontal
lobe, these areas also send projections to their neighboring regions in the pari-
etal cortex, namely the parietal areas 5 and 7b/PF (Stein, 1989; Wise et al.,
1997). These two regions, respectively located dorsally and ventrally to the in-
traparietal sulcus (IPS) are suggested to be involved with different but similar
functionalities, which are described next, beginning with those of area 5.

Multisensory Integration

The two areas mentioned above, namely area 5 and 7b, are processing cen-
ters which integrate sensory signals arising from the primary sensory areas, the
intraparietal sulcus and superior temporal sulcus (Wise et al., 1997). The major
difference between the neural properties of these areas lies in the fact that area
5 is more prone to the strict representation and monitoring of self body (Stein,
1989; Holmes & Spence, 2004), whereas area 7b/PF is rather suggested to pro-
cess sensorimotor representations for actions toward objects and responses to
social signals (Fogassi et al., 2005). Nevertheless, both areas are still closely
related and participate in the cortical network for representing and monitoring
the body and its relations with its environment.
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In the dorsal part of the parietal cortex, area 5 neurons were shown to fire
according to the kinematic features of current posture and movements of the
body (Mountcastle, Lynch, Georgopoulos, Sakata, & Acuna, 1975; Stein, 1989;
Kalaska, Cohen, Prud’homme, & Hyde, 1990). Moreover, it seems that there
is no conclusive findings related to the frame of reference in which these cells
encode movements. Neither purely body part-centered responses, nor viewer-
centered responses were reported (Holmes & Spence, 2004). Nevertheless, since
several neural activity patterns were shown to correlate to two or more limb
joints (Mountcastle et al., 1975), this may suggest that there is in fact multiple
levels of body representation which are encoded in different reference frames.
They may further gradually change from body part-centered to viewer-centered
representations along the same path of proprioceptive information, which flows
from the primary sensory cortices, to the posterior visual areas such as MIP
(Burnod et al., 1999). This ability to represent sensory information in mul-
tiple frames of reference may allow this region to take part in the planning
of movements, which was reported to correlate with an anticipatory firing of
several groups of neurons prior to movement execution (Chapman, Spidalieri,
& Lamarre, 1984; Kalaska et al., 1990). Another related cognitive property is
that neurons within area 5 shows also predictive sensory responses to visual
and movement cues (Mac Kay & Crammond, 1987). This ability to predict the
upcoming sensory consequences of either self action or external events suggests
that this area is endowed with forward models of body dynamics. This hypoth-
esis seems to be corroborated by the reciprocal connectivity of this region with
premotor areas (Johnson et al., 1996; Wise et al., 1997), which may send back
motor efference copies of commands actually sent to the muscles. Indeed, area
5 neurons were shown to fire more vigorously to active movements initiated by
the animal than to passive ones (Mountcastle et al., 1975).

As mentioned earlier, area 7b/PF, located ventrally to area 5, also partic-
ipates in the representation of the body, but it is more concerned with the
relationships between the body and objects, and also with social signals aris-
ing from the observation of actions performed by conspecifics (Fogassi et al.,
2005). First, area PF is somatotopically organized, and exhibit an activation
to multisensory forms of inputs, such as tactile, somatic and visual stimulation
(Andersen et al., 1990; Dong, Chudler, Sugiyama, Roberts, & Hayashi, 1994;
Fogassi & Gallese, 2002). Visual neurons are can be categorized into separate
groups, each of which responds to different forms of visual stimuli. First, since
area 7b receives projection from AIP which encodes the affordances of objects
(Sakata et al., 1998), a subset of 7b neurons are indeed activated by the sight of
a manipulable objects (Sakata et al., 1997). Other projections from the ventral
visual pathway arise from STS, which encodes the visual perception of actions
performed either by the self or by others (Perrett et al., 1990). Consequently,
this explains the visual properties of another group of neurons within area PF
which mimic those found in STS (Fogassi et al., 2005). They also fire during
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the observation of someone else performing a movement. A second general fea-
ture of PF neurons is that they have been shown to display motor sensitivities
corresponding to the putative role of this area (Hyvarinen, 1982). The group
of motor-related neurons are sensitive to the execution of complex movements
such as reaching or grasping movements, which are motor acts having a tight re-
lationship with objects (Fogassi & Gallese, 2002). Importantly, this neural code
is independent on precise movement kinematics or dynamics. These neurons
seem thus to encode a high-level representation of actions. In addition, some
of these neurons also reflect an preferential activation of relevant sequences of
movements such as grasping-to-eat or grasping-to-place (Yokochi, Tanaka, Ku-
mashiro, & Iriki, 2003; Fogassi et al., 2005).

The most interesting property of some of 7b neurons is that they do inte-
grate the visual and motor properties of previously related neural populations.
Importantly, a visuomotor neuron activated by the sight a specific type of ob-
ject will also be activated by the execution of the grasping movement associated
with that object, or at least some parts of the movement (Fogassi & Gallese,
2002). This congruency between visual and motor modalities reveals the role of
this area in the coding of the relationship between the body and the objects in
its surroundings. A final key experimental finding is the reported presence of
the so-called mirror neurons (Rizzolatti et al., 2001; Fogassi & Gallese, 2002).
Mirror neurons were defined as visuomotor neurons which respond both to the
sight of a given action performed by another individual as well as by self motor
execution (Rizzolatti, Fadiga, et al., 1996; Rizzolatti et al., 2001). Importantly,
this may suggest that this neural substrate partly allows the animal to under-
stand the goal of observed actions performed by others (Gallese & Goldman,
1998; Rizzolatti et al., 2001). Indeed, because the monkey may know the out-
come of the motor act triggered by a given mirror neuron, when this neuron
is activated by the observation of another monkey or human performing that
same action, this would means that the monkey recognizes the movement and
consequently its goal. Moreover, since these neurons can start firing before the
beginning of the movements, the ability for the recognition of intentional actions
through this mirror activity is strengthened.

A last area of the posterior parietal cortex involved in the representation
of the body schema has been omitted. Area 7a/PG, located posterior to area
7b/PF, shares some similarities with adjacent cortical regions. For instance, this
area has also been suggested to contain, like LIP, a spatial map of salient visual
stimuli which can remain active even if a stimulus disappears (Constantindis &
Steinmetz, 1996, 2001). In addition, area 7a was reported to monitor the spatial
relationships and the coordination between body parts, and to exhibit predictive
responses to upcoming sensory consequences (Stein, 1989; Rushworth, Nixon,
& Passingham, 1997). The last interesting property of this specific area con-
cerns the frame of reference in which information is coded. Indeed, this region
has been reported to encode spatial information in world-centered coordinates,
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which would allow the animal to situate its body in the environment (Snyder,
Grieve, Brotchie, & Andersen, 1998). Through the direct connectivity of area
7a with the hippocampus (Clower, West, Lynch, & Strick, 2001), an important
subcortical center encoding spatial maps of the environment for self localiza-
tion (Redish, 1999), an extrinsic representation the self in the world can be
built. This finding is of particular interest in that a global view of the self can
be produced, which is directly linked with the local self-representations in the
posterior parietal cortex.

To summarize this section, the posterior parietal cortex is a multisensory
area which integrates visual and proprioceptive information in order to provide
the brain with a coherent representation of the body within its environment.
In addition to this purely representational property, PPC is also involved in
the cortical network for action generation and planning. The multiple levels
of representation across multiple frames of reference allow this region to merge
different sensory modalities which are not initially encoded within the same
coordinate frame, and to control body movements through different strategies.
For instance, goal-directed movements requires the visual information of an ob-
ject to be transferred in to a goal-centered representation. Then it has to be
transformed into a body-part centered representation for the direct control of
the limb joints. Finally, in the ventral part of the parietal cortex, area 7b/PF,
which was reported to encode goal-directed actions, has been shown to exhibit
mirror properties. As a consequence, when an action performed by another
individual is perceived, a motor resonance mechanism may be initiated and
propagated through the remaining of the parieto-premotor network for action
understanding and imitation purposes. Indeed, parietal and premotor are sug-
gested to form a core system for the recognition and reproduction of actions.
The fundamental properties of the motor and premotor regions are discussed
in the next section. As will be described, similar mirror properties were also
observed in the premotor areas reciprocally connected to parietal area 7b/PF.

The Control of Movements: Motor and Premotor Cortices

Despite being studied for a long time, the control of movements is still a
important issue in neuroscience. The motor brain is composed of several cor-
tical areas and of some regions of the lower brain. Its cortical part is recipro-
cally connected with the parietal cortex. In the view of the behavioral role of
the motor regions in the control of movements, the motor cortex is fundamen-
tally involved in the control of the activation of the muscles, either directly or
through coordination patterns of muscle activation. It also involved in the con-
trol of higher-level and complex movements such as goal-directed actions and
the sequencing of motor acts. In the cerebral cortex, the different motor regions
are somatotopically and hierarchically organized (Rizzolatti, Camarda, et al.,
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1996; Schieber, 2001). Each of the subregions were shown to subserve different
functions, which are reviewed below.

The Direct Control of Movements

The last cortical relay in the motor processing chain is the primary motor
cortex (M1 in humans and F1 in monkey). The majority of the neurons within
this area sends motor commands through direct corticospinal projections to mo-
toneuron pools that in turn activate the muscles (Georgopoulos, 1996). Results
of neurophysiological experiments indicate that F1 neurons display a sensitivity
to several, if not all, movements parameters such as position velocity, accelera-
tion and force (Georgopoulos, Kettner, & Schwartz, 1988; Kettner et al., 1988;
Schwartz, Kettner, & Georgopoulos, 1988; Aflalo & Graziano, 2007). By con-
sidering the neurons mostly sensitive to one parameter such as the velocity, a
preferred direction of movements can usually be associated to each of them, in
which the neuron fires maximally. An illustration of a typical firing pattern and
tuning curve of a F1 neuron can be found in Figures 2.8 a and b. In order to mea-
sure the macroscopic effect of the joint activities of the neurons participating in
this distributed representation of movements, Georgopoulos, Kalaska, Caminiti,
and Massey (1982) initially proposed the population vector, which consists of a
weighted summation of the firing activity of each neuron with its preferred di-
rection. Later, a slightly different method using optimal linear estimators was
proposed in order to account for the non-uniform distribution of preferred di-
rections which has been reported in several populations of neurons (Salinas &
Abbott, 1994; Deneve et al., 1999). Figures 2.8 c-e illustrate a population vector
representation of the activity of a group of M1 neurons during the performance
of a straight movement and during lemniscate tracing.

It has been initially observed that M1 neurons were coding movements of
the end-effector in a body centered-reference frame. However, this appealing
and simple principle has been challenged by complimentary studies indicating
that the activity of M1 neurons also depends on limb configuration (Kettner
et al., 1988; Scott & Kalaska, 1997; Kakei, Hoffman, & Strick, 1999; Aflalo &
Graziano, 2006a). The preferential activities of neurons within M1 seems in
fact more distributed over several frames of references which are still close to
the strict joint-centered reference frame compatible with the muscle activation
patterns (Kakei et al., 1999). Figure 2.8f reports the results of a cell recording
study showing that different F1 neurons may encode movement in different
frame reference (Kakei et al., 1999).

More recent insights on the functional organization of the motor cortex were
given by Graziano, Taylor, and Moore (2002). They showed that transcranial
micro-stimulations of the premotor (PM) and primary motor cortices of the
monkey produce the execution of behaviorally relevant movements. Depending
on which site is stimulated, the movements are performed toward various spatial
locations, suggesting a reciprocal mapping between the cortical surface overlap-
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Figure 2.8: The neural basis of population vector coding in the motor cortex. a)
Spike trains of a motor neuron recorded while a monkey was reaching from a central
position to eight peripheral locations on the horizontal plane. The spike trains are
displayed relative to the direction of movement. b) Mean firing activity of the same
cell during movement time sorted according to the direction of movement. The cell
exhibit a preferential broad tuning for a specific movement direction: its preferred
direction. d) Nearly uniform distribution of preferred directions of motor neurons
in three dimensional space. c) 3D representation of motor neurons tuned to three
dimensional movements when the monkey moved its arm in a given direction. The
firing activity of the recorded neurons during the movement are shown as a line with a
direction corresponding to the preferred direction of the neuron and with length to its
mean activity. The population vector computed from this distributed representation
of movement is also displayed. e) The evolution of the population vector during
lemniscate tracing exhibit a high correlation with the real movement direction. Only a
temporal shift can be noticed. f) Multiple frame of reference of movement coding of the
wrist in the primary motor cortex were found. Each row corresponds to the evolution
of the firing activity of a neuron during the performance of a wrist movements in all
allowed direction while the the forearm was maintained in three different orientation.
Each row corresponds to, (A) a cell tuned to muscle centered coordinates, (B) to
extrinsic movement direction, and (C) to extrinsic movement direction but modulated
by forearm orientation. (Adapted from Georgopoulos et al. (1982, 1988); Schwartz and
Moran (1999); Kakei and Hoffman (2001)).
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ping PM and M1, and the target position of movements (Graziano et al., 2002;
Aflalo & Graziano, 2006b). This finding suggests a distributed representation
of movements across the motor regions forming a map of the surrounding and
reachable space. This discovery may conflict with the observed activity patterns
of motor cortical areas, which exhibit only a small sensitivity to the position of
the end-effector. However, it must be noted that TMS is non-physiological, i.e.,
it does not occur during normal behavior. It may nevertheless uncover some
neural processes which can not be recorded in term of neural activation, such
as sub-threshold activity.

Visuomotor Control of Proximal and Distal Movements

Compared to M1, the premotor cortex (PM) has been suggested to be in-
volved in higher motor function. The ventral region of PM coding for the arm
is separated into two subregions, namely, F4 (PMvc) and F5 (PMvr), which
respective activity correlates with the proximal and distal control of the arm
(Rizzolatti, Camarda, et al., 1996; Gentilucci et al., 1988; Rizzolatti, Camarda,
Fogassi, Luppino, & Matelli, 1988). F4 is located in the caudal part of the
ventral premotor cortex (PMv). It is somatotopically organized and its neu-
rons respond mostly to the direction of movement of the arm, but also to other
movement parameters as mentioned above while considering F1 (Gentilucci et
al., 1988; Aflalo & Graziano, 2007). Another interesting property of these neu-
rons is that they also exhibit visual response in a body part-centered manner
(Fogassi et al., 1996; Graziano, Hu, & Gross, 1997). The ability of F4 to re-
spond to visual cues is supposed to originate from posterior parietal area VIP
processing the location of visual objects (Johnson et al., 1996). When a visual
stimulus get closer to a specific part of the arm, some neurons may start firing in
response to this approaching stimulus. Importantly, these neurons correspond
to those which would be activated by a movement of this particular body part.
Finally, as mentioned above, since these neurons respond to visual cues in a
body part-centered frame of reference they thus fire to a visual stimulus irre-
spectively to the arm posture, as long as the object is located in a similar fashion
relative to the arm (Graziano et al., 1997). This reflect a complex visuomotor
mapping within this premotor region, which is suggested to be the basis of the
representation of the peripersonal space (Holmes & Spence, 2004).

In contrast to F4, F5 encodes the distal control of the arms and hands
(Rizzolatti et al., 1988). F5 neurons discharge mostly for specific goal-related
movements, such as grasping and tearing objects. Both hemispheres seem to
control either the left or the right arm. The precise shaping of the hand dur-
ing such movements involving object manipulation (precision grip, whole hand
prehension,. . . ), seems to be controlled by different populations of premotor
neurons (Rizzolatti, Fadiga, et al., 1996; Fogassi & Gallese, 2002). Through its
interconnections with area AIP in the parietal cortex, some neurons within F5
exhibit visual responses to the sight of objects (Murata et al., 1997). Similarly
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a) b)

Figure 2.9: a-left) Response of a mirror neuron to the sight of an experimenter
grasping a piece of food on a tray and while the monkey do the same action. a-right)
This neuron remains silent when the experimenter uses a tool. b-top) Mirror neurons
do not respond to mimed actions. b-bottom) These neurons also exhibit a context-
dependent activity. When the end of the movement is hidden, the neuron keeps firing
if an object has been shown to be placed behind the occluder. It remains silent on
the sight of the same visual information, if there is no object-goal. (Adapted from
Rizzolatti et al. (2001)).

to F4, the neurons sensitive to a particular object are also activated by the
execution of the precise movement which would manipulate it. This property
may reflect an ability of F5 to map object shapes in motor terms, and to encode
sets of potential actions to be executed (Rizzolatti et al., 2001).

Interestingly, F5 also exhibits additional visual properties that are suggested
to be the result of reciprocal indirect connections with the superior temporal
sulcus relayed by parietal area 7b/PF (Johnson et al., 1996; Wise et al., 1997).
For recall, some STS neurons encode a visual representation of hand actions
performed by either the animal or another individual. The presence of canonical
and mirror neurons in area F5 is thus suggested to be the consequence of this
relationship with STS (Rizzolatti, Fadiga, et al., 1996; Rizzolatti et al., 2001;
Fogassi & Gallese, 2002). As already mentioned when considering area 7b of the
parietal cortex, mirror neurons are neurons sensitive to both the observation and
execution of the same motor act. Figure 2.9a shows an illustration of a typical
activity pattern of a mirror neuron. In contrast, canonical neurons reflect more
causal relationships between an executed action that could be performed in
response to an observed one. Indeed, such neurons were found to fire both
for the observation of a human experimenter placing an object on a tray and
the subsequent execution of a grasp by the monkey (Rizzolatti, Fadiga, et al.,
1996; Fogassi & Gallese, 2002). Importantly, these neurons are motor-related.
Their discharge has been shown to be not due to self-vision only (Gallese et al.,
1996). The visual responses of mirror neurons have also been reported to be
goal-centered, in that the intensity of their firing is independent of the point
of view of the animal, i.e., their visual responses are invariant to the distance,
position and orientation of the observed act (Gallese et al., 1996).
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The discovery of such mirror neurons has led to several exciting hypothesis
concerning the cognitive process of action understanding (Gallese & Goldman,
1998; Rizzolatti et al., 2001; Fogassi et al., 2005). Similarly to their homologue
neurons in parietal area 7b/PF, F5 mirror neurons are suggested to be part
of a complex network responsible for the understanding of intentions of others.
Since their firing has been shown be capable to predict the outcome of a given
action before its completion, and even if parts of the movement or goals are
occluded (Umilta et al., 2001) (See Figure 2.9b), the F5 mirror neurons were
proposed to be part of a forward model mechanism which could predict the
consequences of a observed motor act. By motor resonance, i.e., by covertly
activating he same cortical areas as if the animal was performing itself the
same action, this predictive mechanism may allow monkey, and by extension
humans, to understand the purpose of others actions (Gallese & Goldman, 1998;
Rizzolatti, Craighero, & Fadiga, 2002; Miall, 2003).

Conditional Control of Movements and Overt Execution

The conditional control of movements refers to the brain ability to select the
most appropriate motor response depending on the context. For instance, if a
specific movement is required in response to an abstract visual stimulus such
as a colored cue, a stimulus-response mapping has to be performed in order
to select the correct response. Neural correlates of such a decisional process
within the premotor cortex have been reported by several cell recording studies
(Crammond & Kalaska, 1994; Cisek & Kalaska, 2005). They showed that dorsal
premotor areas encode, prior to task execution, the potential response to visual
cues. Then, upon movement execution, their activity patterns change and fi-
nally reflect only the actual movement performed by the monkey. These related
regions on the dorsal part of the premotor cortex are areas F2 and F7. While
area F7 is mostly reciprocally connected with area LIP of the parietal cortex,
area F2 has rather been shown to be linked with area MIP (Johnson et al.,
1996). Similarly to the parietal areas from which they receive projections, F2
and F7 are, respectively, more selectively responsible for the conditional control
of arm movements and of eye saccades, and do represent information in almost
the same coordinate frames, i.e., a mostly eye-centered reference frame (Geyer,
Matelli, Lupino, & Zilles, 2000). In addition, these areas are also connected to
the prefrontal cortex, which is known to process context-dependent information
for action in a relatively high-level fashion, i.e., independently of the required
motor response (Sakagami et al., 2006). Therefore, areas F2 and F7 may be
seen as the interface between such high-level task abstraction with actual motor
responses.

Further, since all the premotor areas described until here appear to encode
potential motor responses to objects and stimuli, this suggest that a control
system in charge of their transformation into actual movement must exist. This
cognitive process has been proposed to be localized in the supplementary motor
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areas (SMA) which can be split into two subareas, namely F3 (proper-SMA)
and F6 (pre-SMA) (Luppino & Rizzolatti, 2000; Rizzolatti & Luppino, 2001).
They are both interconnected and have direct projections to most of the other
premotor and motor areas. Indeed, this functional role of F3 and F6 is cor-
roborated by an important fact. Projections from the SMA to the primary
motor and ventral premotor areas seem indeed to have a modulatory influence
on the control of movement initiation, since F6 and F3 neurons discharge well
in advance of movement initiation, which contrast with the data obtained, for
instance, in F1 (Alexander & Crutcher, 1990; Rizzolatti & Luppino, 2001).

To summarize this section addressing the cortical control of movements, the
important point is that the control of movements, similarly to the representation
of one’s body, involves hierarchically distributed motor representations. The
dorso-medial part of the premotor cortex (areas F3 and F6) computes the control
of which motor acts should be initiated. Indeed, through reciprocal connections
with the parietal cortex processing visual information for action, other motor
regions (areas F2 and F7) have been shown to provide potential motor responses
according to the current task and to the environmental cues. The control of
arm movement per se has then been suggested to involve the ventral part of
the premotor cortex, areas F4 and F5, which respectively control the proximal
and distal aspects of arm and hand movements. Interestingly, these areas also
show visuomotor responses to visual cues, which may simplify the computations
in higher motor control regions. Indeed, F4 and F5 are suggested to provide
sets of motor primitives, where each of them is associated with the objects
relevant to that given motor act. Further, each of these premotor areas project
more or less directly to the primary motor cortex, which has been shown to
be the principal source of corticospinal projections to the spinal cord for the
direct control of the muscles. Finally, similarly to the neurons in area 7b/PF
of the parietal cortex with which they are interconnected, some F5 neurons
also exhibit mirror properties. This finding suggest that observing the actions
of others, in addition to activating purely visual recognition areas, also trigger
parts of the motor control areas. This comfort the hypothesis that a motor
resonance mechanism is involved in the perception of the actions of others by
activating the same regions as if one was actually performing the same actions.

Cognitive Control of Neural Processing Pathways

As mentioned earlier, the parieto-premotor cortices are reciprocally con-
nected to the prefrontal cortex (PFC), to which the control of high-level cog-
nitive mechanisms such as reasoning and decision making has mainly been as-
signed (Miller, 2000). This cortical area is a very large region which can be
separated into several subdivisions. This review will however not address all
of them but only those which are suggested to have an implication in the con-
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trol of movements, and by extension to imitation. The areas known to have
a modulatory control over motor strategies are basically the ventrolateral and
the dorsolateral prefrontal cortices, VLPFC and DLPFC, respectively (Decety
& Sommerville, 2003; Brass et al., 2005; Sakagami et al., 2006). The primary
input to VLPFC is area IT of the temporal lobe, whereas DLPFC is recip-
rocally connected to the parietal and premotor cortices (Petrides & Pandya,
2002). Sakagami et al. (2006) suggested that these two regions, i.e., VLPFC
and DLPFC, form respectively an extension to the ventral "what" and dorsal
"how" visual streams. They proposed that the extended dorsal pathway makes
stereotyped decisions about the control of action, whereas the ventral pathway
is more responsible for deliberate decisions through an inhibitory control over
the automatic decisions taken dorsally (Sakagami et al., 2006).

Neural responses in these areas where shown to primarily reflect go or no-go
signals during the performance of various stimulus-response tasks (Watanabe,
1986; Sakagami et al., 2001). These neurons are temporally activated few mil-
liseconds after stimulus onset, but not at the time of motor execution. This sug-
gests that the firing of these neurons correlates more with the behavioral mean-
ing of the observed stimulus rather than to a motor response per se (Lauwereyns
et al., 2000; Sakagami et al., 2006). Interestingly, the detailed analysis of the
firing patterns of VLPFC neurons suggests that they indicate what the animal
should not do, rather than what it should do (Sakagami et al., 2001). This
finding strengthened the hypothesis of the inhibitory mechanism by which the
prefrontal cortex exerts control on the parieto-frontal network controlling the
execution of actions.

Lesions studies in human prefrontal cortex have shown to result in several
deficiency in the ability to inhibit stereotyped responses and to make decisions
(Lhermite, Pillon, & Serdaru, 1986; Goldman-Rakic, 1996; Brass et al., 2005).
For instance, following prefrontal lesions, patients have been shown to exhibit
degenerative imitative behaviors such as apraxia or echopraxia (Lhermite et al.,
1986; Shimomura & Mori, 1998). The suggested inhibitory control mechanism
of PFC over all the cortex may raise the question as to whether different areas
might control different motor strategies. Recently, a fMRI study investigated
this question by comparing brain activity in the inhibition of non-imitative and
imitative response tendencies (Brass et al., 2005). It was shown that response
inhibition in the two tasks may involve different neural networks. While the
inhibition of non-imitative responses seems to require a fronto-parietal network
involved in interference control and task management, the inhibition of imita-
tive responses involves cortical areas that are required to distinguish between
self-generated and externally triggered motor representations (Decety & Som-
merville, 2003; Brass et al., 2005). The prefrontal cortex is thus of critical im-
portance when considering the neural mechanism controlling imitation as well
as all the previously mentioned premotor, parietal and temporal areas.
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Summary

In this section the functions and major properties of several cortical areas and
brain pathways were reviewed. In particular, the mechanisms of sensory percep-
tion, multisensory integration, and motor and cognitive control were discussed.
Several interesting common neural properties and principles were examined,
particularly the brain’s ability to hold information on several representational
levels or frames of references. Although the range of these reference frames is
relatively broad - it can be eye-centered, body part-centered, goal-centered or
even world-centered - the nervous system is capable of coherently maintaining
all of its information. This coherency is produced with the help of a cortical
mechanism which endows neural structures with predictive abilities. In addition
to the fact that this ability can help the brain to complete missing information,
it can also be used to keep internal representations up to date without needing
to wait for slow sensory feedbacks.

This thesis investigates issues related to how the nervous system transfers
information from one frame of reference to another, produces predictive acti-
vation patterns, and how these action patterns can be useful for multisensory
integration. These abilities play an important role in imitation. In order to
be capable of imitating someone executing movements, one should be capable
of transferring information perceived in eye-centered coordinates into a body-
centered representation. In order to avoid confusing one’s own visual feedback
with those of others, one should be capable of predicting the outcome of one’s
own actions and, consequently, of inhibiting sensory inputs that are too dis-
crepant.

In line with the research questions raised in Section 2.2, which considered
imitation as described by experimental psychology, this thesis will also discuss
the neural mechanisms and brain pathways at the cortical level that mediate
imitation. Although until now each functional property of each cortical area
has been considered separately, understanding the mechanisms involved in the
control of movements requires knowledge of the interactions between each area:
the neural mechanisms underlying imitation are not exempt from the need for a
global view of the brain’s networks for perception and action. The next section
provides a synthesis of what is known about imitative processing pathways.
Experimental data gathered in monkeys, followed by similar data obtained from
human subjects, will be examined.
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2.3.2 The Mirror Neuron System in Monkeys

As pointed out by the present review, a network of brain regions showing
visuomotor properties has been identified by numerous experimental studies in
the monkey, namely the mirror neuron system. In monkeys, mirror neurons were
found in area F5 of the premotor cortex and in area PF of the parietal cortex
(Rizzolatti, Fadiga, et al., 1996; Fogassi & Gallese, 2002). Mirror neurons, partly
defined as exhibiting mandatorily visual and motor responses, are activated
both when the animal performs or sees a goal-directed action2 (Rizzolatti et al.,
2001). Although STS does not contain neurons firing for both action execution
and observation, it may still be considered as a mirror area since it also shows
visuomotor properties, but in an inverted fashion. First, STS appears to be the
locus of the recognition of individual performing actions and is hence highly
suggested to be the main visual input of the mirror system (Perrett, Harries,
Mistlin, & Chitty, 1989; Fogassi & Gallese, 2002). Second, considering its motor
properties, a group of neurons in this area has been reported to be insensitive
to self initiated actions, which was further shown to be dependent on the visual
stimuli (Hietanen & Perrett, 1993, 1996). Thus STS has been suggested to
receive inhibitory back-projections from area PF, causing it to have this inverted
mirror patterns of activity (Hietanen & Perrett, 1996).

In this section, a synthesis of the principal neural information flows which
may explain why mirror neurons in the reported brain regions do display their
intriguing visuomotor properties is provided. Two important processes are de-
scribed: the execution of goal-directed actions and the observation of similar
action performed by other individuals. Indeed, since these two behaviors are
those which were primarily used to identify the mirror system that mainly con-
sists of the overlapping areas required during both types of tasks (Rizzolatti et
al., 2001).

Execution of Goal-Directed Actions: Visuomotor Transformations for Reach-
ing

Figure 2.10 illustrates the principal identified and supposed neural pathways
responsible for the execution of goal-directed actions such as grasping a piece of
food. The graphical representation of the involved brain areas is grounded on
the division of the monkey brain as shown in Figure 2.5.

First, visual information of an object to grasp is perceived through both
eyes and processed by the early visual cortical areas. Then, they project se-
quentially to areas cIPS and AIP, which compute the visual 3D features of the
object and extract its affordances (Sakata et al., 1997). Next, area PF integrate
this information in order to develop a goal-centered sensory representation of

2In addition, it should be noted that these cells may also display a sensitivity to other
sensory modalities. For instance Kohler et al. (2002) showed mirror neurons in F5 which are
also triggered by auditory stimuli such as the sound of breaking a nut.
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Figure 2.10: Principal cortical information pathways during the execution of goal-
directed action: 1) The presence of an object in the visual field is analysed by early
visual areas which then project to area cIPS and AIP of the extractions of the object
affordances. Receiving inputs from AIP, area 7b computes the multisensory represen-
tation of the object with respect to the hand and further sends this information to
premotor area F5 which compute the potential motor commands to manipulate the
object. 2) In parallel, the ventral visual pathway extracts the identity of the object
which is further used by the VLPFC to select the correct action to execute among
those encoded in F5. 3) Motor preparatory activity is then dispatched into premotor
and primary motor cortices responsible for arm and hand movements. This requires
communication with the posterior parietal areas in order to monitor the location of
one’s own limb. 4) The go signal is then sent to the motor regions for execution. 5a)
Motor commands are sent to the muscles. 5b) Simultaneously, the parietal cortex
monitors the actual movement execution and sends inhibitory signals to STS in order
to suppress predicted self-related visual information.

the object in relation with the effectors of the animal (Fogassi et al., 2005).
Connected to area PF, area F5 then processes this multisensory representation
of the object and activates the potential high-level, goal-centered motor com-
mands to execute the possible grasps of this specific objects as indicated by area
PF (Rizzolatti, Fadiga, et al., 1996). In parallel, through the temporal cortex,
area IT extracts the identity of the object for the VLPFC to select which motor
command should be actually executed (Sakagami et al., 2006). Next, the dorsal
part of the parieto-frontal network is activated according to potential actions to
be executed encoded within area F5. It primarily computes the joint-centered
movements of the limbs to be performed though a series of frames of reference
transformations from the goal-centered representation in F5. No overt move-
ments are yet performed. The go signal is then sent to the motor control centers
and the selected action is performed. For an accurate execution, the parietal
cortex simultaneously monitors the proprioceptive feedback which should corre-
sponds to the internal model of the movements, and hence maintains a coherent
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representation of the body state (Johnson et al., 1996). Finally, re-afferent sig-
nals are sent back to STS in order for its neurons to remain silent to the visual
perception of self-generated movements (Hietanen & Perrett, 1993).

Observation of Goal-Directed Actions: The Mirror Neuron System

As shown in Figure 2.11, it has been proposed that the cortical processes of
action observation significantly overlap with those concerned with action execu-
tion. First of all, during action observation, the same processes which compute
the possible actions toward the object located in the environment is also in-
volved, i.e., the dorsal and ventral visual streams. For recall, the former passes
through cIPS, AIP and PF and ends in premotor area F5, whereas the latter
flows through area IT and VLPFC which in turn projects to F5 to select the
most appropriate action which might be executed. However, simultaneously,
the presence of another individual manipulating an object triggers STS which
is assumed to identify the action actually performed by the other agent (Perrett
et al., 1990; Jellema et al., 2004). STS then further projects its goal-centered
representation of the observed action to the parietal area PF. By visuomotor
resonance, PF may attribute to this visual description of the action the sensory
responses which would be perceived during self-execution of that same action
(Perrett et al., 1990). This mentioned motor resonance mechanism is not the
outcome of PF only. Interconnected with PF, F5, which is more responsible of
the processing of motor commands within a goal-centered or distal motor rep-
resentation, may hence display a mirror activity of a specific group of neurons.

From this description of the brain pathways responsible for action execution
and observation, one may have noticed that they have several brain areas and
pathways in common. Apart from the groups of areas responsible for the analysis
of visual information for object manipulation and for motor execution, three
areas remains in between. These are those suggested to be part of the mirror
neuron network, namely, F5, PF and STS. Indeed, although they primarily
subserve different functions, all of these brain regions receive, and thus encode
visual and motor description of actions in a goal-centered frame of reference.
Along this line, a gradual sensitivity to different modalities may be considered.
STS is primarily visual, PF proprioceptive, and F5 motor. The main property,
which may be at the origin of the tight link these three areas, is that they
do all represent actions in a goal-centered frame of reference. Interestingly, no
direct neural link between STS and F5 have been reported so far, which may
seem intriguing at the first glance. Indeed, why visual representation of a motor
act can not be transferred directly to a motor one? Why should the mirror
information flow be relayed by area PF, as indicated by experimental studies?
An hypothesis has nevertheless been raised. Area PF may be a mandatory step
for visual information to be associated with motor commands. Basically, while
F5 encodes the causes of a action, i.e., the motor commands, STS rather encodes
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Figure 2.11: Principal cortical information pathways during the observation of action
performed by others: 1) The presence of an individual in the environment triggers the
temporal centers for the recognition of biological motions. During the observation of
a goal-directed action performed by that individual, STS neurons identify that action
and send this information to area 7b. This area now contains a representation of
that action in terms of the sensory responses which would be perceived during self-
execution. 2,3) However, simultaneously, since an object is present in the visual field,
both dorsal and ventral pathways for object recognition are activated. As a result
the observer is ready for acting upon the object by the activation of area F5. 4) The
projection of the information processed by STS is then relayed to area F5 through area
7b, which produces the reported mirror activity. The highlighted areas are the mirror
areas 7b and F5 which are sensitive to both action execution and action observation.
Moreover, even if STS does not display the same activity pattern, it can also be
considered as mirror since its activity is modulated in both conditions. Indeed, during
action observation, it reacts to movements performed by others, whereas during action
execution, its visual response is inhibited by the consequences of self action.

its consequences, i.e., the visual feedback. Then, since PF, and more generally
the parietal cortex, is suggested to hold an internal model of the body which
consists of storing a multisensory representation of the body and of maintaining
it updated through motor efference copies, PF may be located in between, i.e.,
PF may represent both the causes and the consequences of an action. This
may therefore explain its mandatory role in the transfer of information from the
primarily visual area to the motor region, and vice-versa.

The reciprocal connectivity across STS-PF-F5, which is responsible for the
mirror response of certain groups of neurons, thus allows a mapping between
the visual perception of movements and the motor representations in charge of
their execution. Because this network of brain regions could help understand
the actions of others through a mechanism of visuomotor resonance, it has been
suggested to be at the core of the cognitive processes by which monkeys are
capable of behaving socially. However, as highlighted in this review, the monkey
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mirror system is grounded on goal-centered representations only. This may
thus explain why imitative abilities of monkeys only focus on actions involving
objects, which is clearly different as to what humans can do. Therefore, one
may ask for the cortical differences between these species. Cortical similarities
as well as possible differences are presented in the next section.

2.3.3 The Mirror System in Humans

In human, studies of brain lesions resulting in degenerate imitative behaviors
(apraxia or echopraxia) were the first to give some insight into the brain areas
responsible for imitation, pointing to generic areas in the frontal and parietal
cortices (Lhermite et al., 1986; Shimomura & Mori, 1998). More recently, de-
spite important experimental constraints, evidence of a similar mirror system
has been gathered by a series of brain imaging studies. (Decety et al., 1997;
Iacoboni et al., 1999, 2001; Decety et al., 2002; Rizzolatti et al., 2002; Mühlau
et al., 2005). The results of these experiments suggest that the human mirror
system primarily involves Broca area (in the ventral premotor cortex (PMv)),
parts of the posterior parietal cortex (PPC) and of the superior temporal cortex,
which are supposed to be the human homologue regions of macaque areas F5,
7b/PF and STS (Rizzolatti & Arbib, 1998; Arbib & Bota, 2003). These mirror
areas were primarily found during fMRI or PET scans, where subjects were
alternatively asked to observe movements and then to imitate them (Iacoboni
et al., 1999; Decety et al., 2002; Koski et al., 2003). In addition to their specific
and somatotopic activation patterns during both action observation and execu-
tion (Buccino et al., 2001), these areas appear to be more strongly activated
when there is an intention to imitate (Iacoboni et al., 1999; Chaminade & De-
cety, 2002). Together with the reported stronger activation of human STS, PMv
and PPC during the observation of well practiced movements as compared to
unfamiliar movements (Calvo-Merino, Glaser, Grèzes, Passingham, & Haggard,
2005), these findings highly suggest a motor resonance mechanism similar to
that found in monkeys. Human may thus also understand others by means of
their own motor vocabulary3 (Blakemore & Decety, 2001).

Despite this functional similarity with the macaque brain, an important
issue about mirror neurons and their suggested implications in the mechanisms
of imitation concerns the inability of monkeys to imitate tasks in which targets
or goals are not involved4 (Myowa-Yamakoshi & Matsuzawa, 1999). In contrast,
humans can handle both goal-targeted tasks and intransitive ones (Whiten et

3The concept of motor vocabulary together with the reported mirror activity of Broca’s
area, suggested to be the locus of language processing, have led to the hypothesis that the
mirror system may be the precursor of the brain network responsible for language (Rizzolatti
& Arbib, 1998; Arbib, 2002; Pulvermüller, 2002).

4These tasks in which no explicit goals are involved were often associated with the means
of achieving actions, in contrast to the goal only (Tomasello et al., 1993; Wohlschläger et al.,
2003).
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al., 1991). One simple reason for this was proposed, suggesting that monkeys
may lack intentions for imitation (Rizzolatti & Luppino, 2001). However, recent
studies rather pointed out that, in humans, another processes recruiting different
cortical areas are also involved. It not only because monkeys do not have an
intentional system for imitation that they do not truly imitate, they also seem
to lack a fundamental cognitive processes for imitation. Indeed, the human
mirror system has been reported to be activated by the observation of both
goal-directed and meaningless, or intransitive, movements (Iacoboni et al., 1999;
Buccino et al., 2001; Koski et al., 2002; Grezes, Armony, Rowe, & Passingham,
2003). For instance, in the human primary motor cortex (M1), transcranial
magnetic stimulation (TMS) studies showed that the motor excitation threshold
needed to induce motor responses decreases during the observation of either
meaningful or intransitive movements (Fadiga, Fogassi, Pavesi, & Rizzolatti,
1995; Clark, Tremblay, & St-Marie, 2003).

At the level of the cortical functions, the main differences between humans
and monkeys were primarily identified by means of brain imaging experiments.
In humans, in addition to the areas homologous to those composing the monkey’s
mirror system, other cortical areas were also reported to be active during tasks
resembling imitation. They include the primary motor cortex (M1) (Fadiga et
al., 1995; Hari et al., 1998), the primary and secondary sensory cortices (SI-
II) (Keysers et al., 2004), the supplementary motor area (SMA) (Ferstl & Von
Crammond, 2002), the extra-striate body area (EBA) (Downing, Jiang, Shu-
man, & Kanwisher, 2001; Astafiev, Stanley, Shulman, & Corbetta, 2004; Chan,
Peelen, & Downing, 2004), the inferior parietal lobule (IPL) also known as the
tempo-parietal junction (TPJ) (Decety et al., 2002; Brass et al., 2005), and the
anterior medial frontal cortex (AMFC) (Decety et al., 2002; Brass et al., 2005).
Patterns of activation found in M1, SI-II and SMA may not be inconsistent with
actual monkey data. Indeed, although direct recordings within these areas in
monkeys did not reveal any mirror activity, these regions may nevertheless be
involved, either by sub-threshold excitations or contextual inhibition (Graziano
et al., 2002; Keysers et al., 2004). However, the presence of the others areas
in the putative human mirror system requires further considerations relative to
their potential role.

The extra-striate body area (EBA) is highly suggested to be specialized
for the recognition of biological motions and postures (Downing et al., 2001;
Astafiev et al., 2004; Chan et al., 2004). It has also been reported to exhibit
greater activation prior to imitation as compared to a task requiring only obser-
vation (Decety & Chaminade, 2003; Jackson, Meltzoff, & Decety, 2006). Inter-
estingly, EBA has also been shown to be activated during self motor execution
(mirror activity), which has been further shown to be not the consequence of
self observation only (Astafiev et al., 2004). Importantly, EBA is not especially
sensitive to goal-directed actions, but to any form of movements and postures.
However, the exact role of EBA in imitation is still not clear. It is nevertheless
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suggested to encode a visual representation of one’s own body and that of others
(Berlucchi & Aglioti, 1997; Ruby & Decety, 2001; Jeannerod, 2003; Jackson et
al., 2006). This ambivalent property of EBA in the processing of either self or
others’ body has led to the hypothesis that this area is involved in the transfer
of visual information represented in the third-person perspective into the first-
person point of view. Indeed, EBA shows slightly greater activation during the
observation of body parts presented in a third-person perspective (Chan et al.,
2004; Astafiev et al., 2004). This suggests that more computational resources
are needed in this condition for this transfer to be performed. However, another
hypothesis may be raised to explain this differential activation contrasting the
observation of bodies in a first-person perspective with a third-person point of
view. In brief, it assumes that EBA basically represents body-centered repre-
sentations of bodies, irrespective of their ownership, but more details will be
given in Section 2.3.4 which addresses the mechanisms of distinction between
self and others.

A similar modification of cortical activity has also been reported in the
tempo-parietal junction (TPJ) in the inferior temporal lobe, which seems to in-
dicate that EBA is tightly connected to this area (Ruby & Decety, 2001; Arzy,
Thut, Mohr, Michel, & Blanke, 2006). The recruitment of TPJ in the processing
of visual information may be explained by the fact that the human parietal cor-
tex is known for its implications for the integration of sensorimotor information
(Sirigu et al., 1996). More particularly, IPL or TPJ were clearly identified as
mediating the processes of bodily awareness (Berlucchi & Aglioti, 1997; Blanke,
Ortigue, Landis, & Seeck, 2002; Farrer & Frith, 2002), the representation of self
information in allocentric or world-centered coordinates (Farrer & Frith, 2002),
ego-centric perspective taking (Ruby & Decety, 2001; Jeannerod, 2003), and im-
itation (Chaminade & Decety, 2002; Meltzoff & Decety, 2003; Chaminade et al.,
2005). Another important property of this area is that it is also involved in the
inhibition of automatic imitative behaviors (Brass et al., 2005). From its central
location between the visual inputs and the internal sensorimotor processes, TPJ
may be seen as a gate which mediates the flow of visual information entering
the parieto-frontal network controlling the execution of actions. During this in-
hibitory process, AMFC, which has been reported to control the self-initiation
of movements, is also activated, suggesting a close relationship between this area
and TPJ (Decety et al., 2002; Brass et al., 2005; Brass & Heyes, 2005). This
TPJ-AMFC network has thus been suggested to control imitative responses.
While AMFC provides intentional cues to imitation, TPJ controls the flow of
visual information entering the imitative resonance mechanism.

From these findings, a strong belief has developed in that, in contrast to
that of the monkey, the human mirror system may involve at least two separate
processes (Blakemore & Frith, 2005; Rumiati et al., 2005; Oztop et al., 2006).
While a monkey-like affordance-based neural information flowing through IPS
to Broca’s area would be more concerned with goal-centered aspects of the
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action (Koski et al., 2002; Chaminade & Decety, 2002; Brass & Heyes, 2005),
a motor contagion pathway going from the extra-striate body area, through the
inferior parietal lobule, to the dorsal part of the parietal cortex would be more
specifically tuned to the processing of intransitive biological motions (Rumiati et
al., 2005). This cortical differences with the monkey brain then suggested that
imitation is not inherent in a macaque-like mirror system but instead depend on
the embedding of circuitry homologous to that of the macaque in more extended
systems within the human brain (Rizzolatti & Arbib, 1998; Oztop et al., 2006).

In the following paragraphs, a schematic view of the two suggested path-
ways underlying the human abilities for imitation are presented. Since, the
affordance-based or goal-directed action pathway resemble the monkey mirror
system, it will be first described.

Goal-Directed Action Pathway

Similarly to that of the monkey, the human goal-direct action pathway in-
volves the cortical regions responsible for the analysis of visual information
related to objects, individuals, and their interactions, i.e., IPS, STS and IT.
As shown in Figure 2.12, since EBA is involved in the recognition of people,
it is also included in this neural pathways as an input to STS. The ventral
visual pathways for action recognition is then assumed to be gated by TPJ be-
fore entering the action stream which ends into PMv, the homologue regions of
area F5 in the monkey. Further, the execution of either a self-motivated action
toward an object or an imitative response is mediated by the frontal cortices
which triggers the actual performance controlled by the parieto-frontal network
for reaching and grasping. Importantly, it should be noticed that the action
streams primarily involves object- or goal-centered representations.

Motor-Contagion Pathway

In contrast, the motor contagion pathways are primarily distributed within
cortical regions involving body-centered representations. The schematic view
of these pathways is depicted in Figure 2.13. Similarly to the goal-directed
pathways, the flow of visual information passes through EBA and STS. IT is not
involved here since no objects are considered in this case. Further, gated by TPJ,
visual representation of bodies are projected to the posterior parietal cortex in
particular in the human homologue of monkey area 5, integrating a multisensory
representation of the body. This region can thus perform the mapping between
observed movements with one’s own movements. Then, this area projects to
SMA in order to activate the corresponding motor commands. This dorsal
parieto-frontal network is thus suggested to be the motor resonance system for
intransitive movements. More or less simultaneously, the extended ventral visual
stream passing through STS and LPFC control with more precision what type
of movement has been observed and help SMA select the correct movement

55
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Figure 2.12: The goal-directed action pathways in a lateral view of a human brain.
This figure mostly combines the pathways associated to action observation and ex-
ecution as reported in the monkey and already shown in Figures 2.11 and 2.10. In
addition, in order to lighten the figure, several areas present on previously mentioned
figures were fused into single tags. Finally, the cortical areas more specific to the
human brain were also added.

for reproduction. Finally, AMFC controls the initiation of the self-generated
movements.

This analysis of the human cortical pathways for imitation clearly suggest
that an additional processes for imitating intransitive movements is at play
as compared to current knowledge of monkey neurophysiology. Importantly,
this stresses that the possible lack of an intentional system for imitation in
monkey should not be considered as the only problem by which monkeys do
not truly imitate (Rizzolatti & Luppino, 2001). Indeed, the main difference
between humans and monkeys seems that human have a more elaborated cortical
network for imitation (Rumiati et al., 2005). This agrees with several current
views concerning the role of monkey mirror system with respect to imitation.
Mirror neurons may be involved in generating imitation without imitation being
the function that favored their evolution by natural selection. In other words,
imitation and other functions of mirror neurons could be exaptations rather
than adaptations (Arbib et al., 2000; Oztop & Arbib, 2002; Keysers & Perrett,
2004; Brass & Heyes, 2005). The human ability for imitation would therefore
be built on top of the mirror system found in its ancestor and have evolved
similarly by exaptations of the primary role of the areas involved in the second
processing stream of the reproduction of intransitive actions.
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Figure 2.13: Illustration of the intransitive action pathways in a lateral view of a human
brain. Similarly to Figure 2.12, both pathways mediating movement observation and
execution were combined on the same figure.

2.3.4 Shared Representations and the Discrimination

Between the Self and Others

An important issue related to the putative neural mechanisms at the basis
of imitation concerns a problem arising from the principle of shared represen-
tations. Why don’t we confuse observed actions with our own intentions and
copy every movement that we see (Jeannerod, 2003; Brass & Heyes, 2005). Al-
though interferences still occur during normal behaviors, suggesting conflicts at
the level of these shared representations (Kilner et al., 2003; Chaminade et al.,
2005), the human ability to discriminate between self actions and those of others
is still efficient (Van Den Bos & Jeannerod, 2002; Jeannerod, 2003).

Several experiments have addressed the brain mechanisms of self-awareness
and self-agency which imply the ability to discriminate between self and others
(Chaminade & Decety, 2002; Decety et al., 2002; Farrer & Frith, 2002). A key
finding of these studies concerns a probable lateralization of the processes un-
derlying the representation of self and others. With respect to imitation, the
most important differentially highlighted area in both hemispheres of the hu-
man brain is the tempo-parietal junction (TPJ). Interestingly, in a reciprocal
imitation task, where human subjects were required in a first phase to imitate
observed actions of an experimenter, and further to produce self-intended ac-
tions and observe the experimenter imitating them, Decety et al. (2002) showed
that the right TPJ was more activated when the subjects were being imitated,
whereas the left TPJ was more strongly involved during active imitation. This
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study clearly puts forward the necessity to consider the two brain hemispheres as
being involved in similar but different fundamental functions. Indeed, Decety et
al. (2002) interpreted their results by stating that the lateralization of TPJ may
indicate a separate processing of self-related versus others-related information,
respectively in the left versus the right hemisphere. However, this hypothesis
might be not correct. As will be explained below, converging lines of evidence
rather suggest the opposite while staying in accordance with their experimental
results.

In addition to this hypothetical separation between the left and the right
hemispheres, studies focusing on other cognitive processes have also suggested
functional roles which may apply differentially to each hemisphere. Consider-
ing the control of movements, lesions studies indicate that the left hemisphere
is more associated with the control and planning of movement trajectory, i.e.,
the executive functions, (Hermsdörfer, Blankenfeld, & Goldenberg, 2003; Haa-
land, Prestopnik, Knight, & Lee, 2004), while the right hemisphere is more
related to the online control of movements and closed-loop processing, i.e., the
internal representation and monitoring functions (Haaland & Harrington, 1996;
Hermsdörfer et al., 2003). Together, these hypotheses appear to converge to-
ward an unified description of the general role of both sides of the brain. The
left hemisphere seems to be the dominant one for action, more or less irrespec-
tively of the agent performing the action, i.e., it may be more concerned in
relating the self with the others and conversely by means of shared representa-
tions (Barresi & Moore, 1996; Decety & Chaminade, 2003; Mühlau et al., 2005;
Jackson et al., 2006). In contrast, the right hemisphere would be more involved
in self-awareness and self-representation by differentiating self from the others5

(Farrer & Frith, 2002; Decety & Chaminade, 2003; Brass et al., 2005). For
instance, self-face recognition has been reported to primarily involve that right
hemisphere and not in the left one (Uddin, Kaplan, Molnar-Szakacs, Zaidel, &
Iacoboni, 2005). Additional specific evidences of this functional lateralization
between self and others processing are further given with respect to the brain
areas suggested to be involved in imitation.

Primarily sensory areas are first considered. The somatosensory area SII
which is sensitive for feeling being touched, has been shown to display a mirror-
like activation in the left hemisphere only (Keysers et al., 2004). In contrast,
EBA, which also exhibit a differential hemispherical activation during the obser-
vation of bodies, has been shown to be more activated on the right side during
the observation of body parts presented in a third-person perspective than in a
first-person perspective (Astafiev et al., 2004; Chan et al., 2004). Similarly, rep-
resenting mentally oneself from an allocentric point of view results in a higher
activation of the right EBA with respect to an egocentric representation (Arzy

5It is however important to note that this separation is not strict. Indeed, since both hemi-
spheres are highly interconnected, one should consider these points as indicating hemispherical
dominance rather than exclusivity. For instance, the parietal cortex is bilaterally involved in
the monitoring of self generated movements (Wolpert, 1998; Chaminade et al., 2005).
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Figure 2.14: Illustration of the cortical pathways mediating the distinction of the
visual information related either to the self of other individuals. The cortical circuit
formed by EBA, TPJ, and AMFC is likely to be responsible for gating the flow of visual
information entering either the left or the right hemisphere. While the right hemisphere
may be restricted to represent self-related information only, the left hemisphere seems
to allow shared representations to develop by combining both self- and others- related
information.

et al., 2006). The left EBA is similarly activated in both conditions, suggesting
that it encodes view-independent visual information (Chan et al., 2004; Arzy et
al., 2006).

At first glance, the findings related to the right EBA, may contradict the
proposed model of hemispherical lateralization. Indeed, how may one explain
the stronger involvement of the right EBA during both the observation of the
body parts of others, and the representation of self from an allocentric point of
view, since that hemisphere is suggested to process the sense of self-awareness.
Nevertheless, one may assume that EBA is not primarily concerned with disam-
biguating self and others, in that it may represent bilaterally a body-centered
representations of bodies irrespectively of their ownership. Then, its reported
greater activation in the third-person condition may be caused by an inhibitory
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back-projection from the right TPJ6. Indeed, the right TPJ seems to be involved
in the processing of self-awareness and self-agency by integrating multimodal
sensorimotor inputs from its neighboring regions (Blanke et al., 2002; Farrer
& Frith, 2002; Decety & Sommerville, 2003; Brass et al., 2005). Similarly, the
left TPJ is also suggested to perform multisensory integration, but rather with
the purpose to actively imitate others (Decety et al., 2002; Mühlau et al., 2005;
Jackson et al., 2006) and to reason about the beliefs of others (Samson, Ap-
perly, Chiavarino, & Humphreys, 2004). Here, an hypothesis relative to the
functional role of the TPJ is adopted. The role of both left and right TPJ is
proposed to gate the flow of view-independent visual information coming from
EBA, such that this information may either be integrated into the parietal cor-
tex as belonging to the self-body schema (mostly right TPJ), or be considered as
to belong to another individual (mostly left TPJ). Within the left hemisphere,
the integration of the visual description of another individual may further be
useful for understanding its intentions or even for imitation. Then, in order to
be capable to determine whether a given visual input belong to the self, the
right TPJ may act as a comparator between an observed body part and the
mental prediction of the visual aspect of that body part processed within the
parietal cortex. When there is a perfect match, the right TPJ let the visual
information conveyed by EBA enters the parietal cortex bilaterally. However, a
mismatch may trigger the right TPJ to inhibit the right EBA. Interestingly, the
inhibition of automatic imitative behaviors has been shown to also involve right
TPJ (Brass et al., 2005; Brass & Heyes, 2005), which may bring one to postulate
that this area has also a selective inhibitory effect on the left EBA. Indeed, by
controlling the amount of visual information entering the left hemisphere, the
brain may hence reduce the motor resonance suggested to lead to automatic
imitative response tendencies. Thus, together with prefrontal areas responsible
for movement inhibition and self-awareness, i.e., LPFC and AMFC, the network
encompassing the tempo-parietal junction is suggested to both control the self
body schema, and to modulate the amount of convergence between self-related
and others-related sensory information for action understanding and imitation.

To summarize, the left hemisphere is believed to be the dominant one for
action (Barresi & Moore, 1996). It can map the action of others into one’s
own sensorimotor representation and hence is more concerned in relating others
with self and thus in imitation. (Decety et al., 2002; Decety & Chaminade,
2003; Jackson et al., 2006). In contrast, the right hemisphere seems to be more
involved in self-awareness. One of its role is primarily to differentiate the self
from the others. By this cognitive ability, it can also inhibit automatic imita-

6Although one may think that an inhibited region should not appear active during a PET
or fMRI scan, it should be mentioned that the brain areas highlighted in a given task are not
mandatorily directly involved in that task. Indeed, the activation patterns measured by these
brain imaging techniques may also indicate that these areas receive strong synaptic inputs
from other areas, which can therefore be either excitatory or inhibitory (Arbib, Bischoff,
Fagg, & Grafton, 1995).
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tive responses and motor contagion mechanisms initiated in the left hemisphere
(Decety et al., 2002; Decety & Chaminade, 2003; Brass et al., 2005; Brass &
Heyes, 2005).
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Summary

The brain regions and neural pathways responsible for fundamental imita-
tive behaviors in monkeys and humans were described in this section. These
pathways are similar in both species, since they are relatively close in the evolu-
tionary tree. However, in line with the behavioral discrepancies between humans
and monkeys reported by ethological studies (see Section 2.1), there are also sev-
eral cortical differences. This review suggested that both that monkeys may lack
an intentional system for imitation as well as that a supplementary brain areas
and a second cortical route are involved in the imitation of intransitive actions,
and by extension, in the imitation of the means of achieving goals. While a
goal-directed imitative pathway, common to both species, has been shown to
recruit goal-centered neural representations, the second route may have evolved
in humans through the use of cortical regions that represent information en-
coded in body part-centered reference frames. This thesis provides models that
accomplish two goals: exploring how such representation could be obtained from
purely sensory representations, and more precisely identifying the neural path-
ways that mediate these two imitative routes. The approach here consists of
developing and reusing existing experimental paradigms developed in experi-
mental psychology in order to analyze these seemingly separate processes. This
allows for an investigation of how these processes could interact and also at
what level of the cortical sensorimotor circuits this interaction occurs.

Using the same approach this thesis will also investigate the neural mecha-
nisms responsible for discrimination between the self and others. The principle
of shared representations, whose neural substrate is located within the mirror
neuron system, implies a mechanism for disentangling the sensory feedback as-
sociated with the body of oneself or of another. This research is therefore also
intended to illuminate which neural mechanisms, at both the neural structure
and network level, are responsible for this fundamental cognitive process. The
next section first presents some relevant attempts to model the mechanisms of
imitation, including the mirror neuron system.
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2.4 Related Neural Models of Imitation

Many modeling studies have addressed imitation and the mirror system.
Although these two computational issues have often been intermingled, it is im-
portant to stress that they are not reciprocally inclusive. Indeed, a fundamental
problem in this easy association that today scientists usually make between imi-
tation and its putative neurophysiological substrate, is that monkeys, which are
animals endowed with such a system, do not imitate in a strict sense. There-
fore, building a system having mirror properties as reported by neurophysiology
may not be sufficient to explain the mechanisms underlying human imitation.
Additional networks or connectivity among existing ones must be considered in
order to provide a computational model to perform true imitation. Modeling
the mirror system or its development is one thing, modeling the mechanisms of
imitation as performed by the human brain is far a more complex one.

In this section, a review of some models of imitation which provide impor-
tant computational landmarks and key steps toward a better understanding of
this human ability is given. But before starting, it is necessary to note that
different approaches have been adopted in the literature. In this thesis, since
the focus is on the understanding and on the modeling of the cortical processes
of imitation, this review will only describe models which use computational
neuroscience as a fundamental modeling basis7. First of all, generalist theories
which try to provide global insights on the processes underlying imitation are
described. Next, computational studies primarily concerned with the modeling
of the mirror system as well as how to take advantage of its properties in order
to endow these model with imitative behaviors are presented. Further, a de-
scription of an approach to imitation based on control theory in which inverse
and forward control models are coupled is given. Developmental approaches
will also be discussed in which imitation abilities are suggested to arise from
sensorimotor development. And finally, this review will end with models which
are intended to explain how high-level cognitive functions related to imitation
can be produced, such as those involving reasoning.

2.4.1 Theories of Imitation

Sensorimotor Resonance and the Ideomotor Theory

Imitation and its underlying cognitive mechanisms has received a lot of atten-
tion from psychology in the past century. An early study was reported by Piaget
(1978), who did a longitudinal analysis on his three children. He suggested that
imitation develop through several stages in the childhood. He also postulated

7The reader interested in computational models developed along a more engineering-based
methodology is referred to the following references (Kuniyoshi, Inaba, & Inoue, 1994; Schaal,
1999; Ijspeert et al., 2002; Calinon & Billard, 2007; Guenter et al., 2007).
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that these stages closely follow the hierarchical growth and maturation of the
internal sensorimotor loops for the control of the body. Interestingly, by what he
already called sensorimotor resonance, the developing cognitive processes of sen-
sorimotor awareness, in addition to produce low-level forms of imitation, allow
children to establish social codes and communicate with the adults, and even
to infer the mental states of others. In agreement with the more recent work of
Nadel et al. (1999), Piaget (1978) also suggested that the early resonance pro-
cesses or circular reactions, may be due to the inability of infants to differentiate
the self from the others, an ability which arise further through the development
of the children. The idea of a common representation originally recruited ir-
respectively of the ownership of input visual stimuli representing movements,
was also a fundamental hypothesis of the ideomotor theory, by which observing
others influence the quality of one’s own performance (Greenwald, 1970).

The Active Intermodal Mapping Model

Thirty years ago, Meltzoff and Moore (1977) reported that neonates can al-
ready imitate a small set of facial expressions such as tongue protrusion. This
discovery was particularly intriguing because it is difficult to explain how a child,
who has not seen his/her own face yet, can map the visual information of some-
one protruding the tongue to his/her own motor commands for performing the
same action. In order to explain this phenomenon, Meltzoff and Moore (1997)
suggested the Active Intermodal Mapping hypothesis (AIM) that supposes an
innate visuomotor mapping of the body mediated by a supra-modal representa-
tion. A sketch of this model is given in Figure 2.15a. Unfortunately, the authors
of this hypothesis neither mentioned nor provided any evidence of what may be
the content of this supra-modal representation and of in which part of the ner-
vous system it may be located. Nevertheless, subsequent studies suggested that
face-detection abilities of newborn infants may be processed through an innate
subcortical route (Johnson, 2005). A problematic issue with the AIM theory
is that it postulates the existence of an innate visuomotor mapping between
visual perception of body parts with the motor codes making them move, and
therefore, it implies that imitation is body part specific, which was shown to
be wrong. Indeed, imitation is much more complex. First, it clearly involves
more than one automatic cognitive processes, and second, it also depends on
rational forms of reasoning (Bekkering et al., 2000; Gergely & Csibra, 2003;
Wohlschläger et al., 2003).

The Theory of Goal-Directed Imitation

Another important characteristic of imitation is that it is primarily directed
toward achieving goals. The theory of Goal-Directed Imitation (GOADI) pro-
posed by Wohlschläger et al. (2003) considers imitation as being purposeful,
a principle which can thus be valid in children, adults and animals. GOADI
describes an imitative act in several steps. First, perceived acts are decom-
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Figure 2.15: Cognitive Theories of Imitation: a) The Active Intermodal Mapping
(AIM) theory assumes that visually perceived acts are actively mapped onto motor
output via a supra-modal representation system. b) The Associative Sequence Learn-
ing (ASL) model assumes that visual (sensory) representations of action become linked
to motor representations (encoding somatosensory information and motor commands)
through Hebbian learning. In environments where the same action is simultaneously
seen and executed, links are formed between visual and motor representations of the
same action. As a result, action observation may trigger the corresponding motor
representation. (Adapted from Meltzoff and Moore (1997); Heyes (2001))

posed of into separate goal-centered aspects. One or more aspects, the most
important ones, are then selected by a cognitive process with respect to capac-
ity limitations. Next, the selected goals are hierarchically ordered according to
the functionality and relevance of actions. For instance, ends, e.g., objects and
treatments of the latter, are more important than means, e.g., effectors and
movement paths. Finally, the selected goals elicit the motor programs to which
they are strongly associated (ideomotor principle). These motor programmes
do not necessarily lead to matching movements, although they might do so in
many everyday cases (Bekkering et al., 2000; Wohlschläger et al., 2003). In
contrast to AIM, GOADI not only explains several experiments on behavioral
imitation in children and adults, but also gives this ability a more functional
nature. The purpose of learning by imitation consists primarily to reach the
same goals as the model, while copying the means may be helpful, but is not
mandatory (Wohlschläger et al., 2003).

The Associative Sequence Learning Model

Complementarily to GOADI, Heyes (2001) proposed the Associative Sequence
Learning model (ASL). In contrast with the AIM model, and in agreement with
Piaget (1978), the ASL model considers that the development of imitative abil-
ities is highly experience-dependent. Moreover, it also suggests that imitation
is mediated by sets of bidirectional excitatory links between sensory and mo-

65



tor representations of movement units (See Figure 2.15b). While links between
within motor or sensory representations represent possible sequences of actions,
the so-called vertical associations connecting together sensory and motor repre-
sentations are proposed to be either direct or indirect. The latter indirect map-
ping is suggested to be relayed by an intermediate representation of distinctive
content. For instance, a language representation such as words or phrases could
be established when the verbal stimulus co-occurs with either the sight or ex-
ecution of a movement. Despite being strongly based on experience-dependent
sensorimotor associations, this model also acknowledges the possible existence
of innate vertical connectivity for some facial behaviors such as smiling, yawn-
ing or tongue protrusion (Heyes, 2001; Brass & Heyes, 2005). Finally, the ASL
model also attempts to explain the imitation of opaque actions such as facial ex-
pressions. It suggests that the corresponding sensorimotor representations are
normally generated in specific environments such as those created by optical
mirrors, imitative social partners and explicit training regimes.

2.4.2 Modeling and Understanding the Mirror System

This section presents modeling studies which aimed at understanding the
neural mechanisms imitative behaviors as well as their suggested core neural
substrate, i.e., the mirror system.

Connectionist Approaches to the Mirror System

One of the earliest modeling study related to the neural mechanisms of
imitation has been proposed by Arbib et al. (2000). In this work, the authors
primarily proposed a framework in which the results of their modeling studies
could be compared to real fMRI data obtained on human subjects (Arbib et
al., 1995). This method consists in assigning to each sub-network of a model, a
given cortical area. Then by measuring the strength of synaptic activity of each
region of the model, which was suggested to correspond to what is effectively
measured during brain imaging experiments, they were capable to reproduce
neurophysiological data related to imitation in humans as well as to provide
experimental predictions.

Next, as mentioned above, this work considered several modeling studies of
the authors, which were also published separately. First, a connectionist model
which primarily aimed at learning the coordination patterns of arbitrary hu-
man movements was proposed by Billard and Mataric (2001). In this work,
a hierarchy of time-delayed neural networks capable of learning to reproduce
sequences of arbitrary signals was developed (Billard & Hayes, 1999). Each of
the elements described in the model was associated with a brain region among
those involved in visuo-motor control, including parts of the monkey mirror re-
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Figure 2.16: FARS and MNS1 models: a) Minimal sketch of the FARS model related
to the execution of grasping actions. The observation of a cup activates possible
affordances within area AIP which in turn selects the corresponding possible motor
programs in area F5. In parallel, another stream flows through IT which informs the
prefrontal cortex of the precise nature of the object. PFC finally decides which is the
correct affordance for grasping that object. b) The Mirror Neuron System 1 extends
the FARS model by considering additional brain areas and by distinguishing the role
of the F5 canonical and mirror neurons. A specific area processes the hand-state which
corresponds to an invariant representation of the relationship between any hand and
objects. (Adapted from Fagg and Arbib (1998); Oztop and Arbib (2002))

gions. After learning from human demonstrations, the reproduction of observed
movements showed a high qualitative and quantitative agreement with human
data. It is important to note here that the mapping of the internal model of
movement generation with the visual perception of another individual was re-
alized by means of an invariant representation of arm movements. Indeed, in
this model, Billard and Mataric (2001) used the orientation and velocity of each
body joint as sensory cues to be learned.

The Mirror Neuron System 1 and 2

The second model that was described by Arbib et al. (2000) consisted of
a detailed modeling of the mirror neuron system in monkeys which includes
a neural implementation (Oztop & Arbib, 2002). The so-called Mirror Neuron
System 1 model (MNS1) primarily focused on understanding the patterns of
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activation within monkey area F5 and its interactions with its connected brain
regions. This model extends the Fagg-Arbib-Rizzolatti-Sakata model (FARS)
which represents the brain circuitry for visually guided grasping of objects (Fagg
& Arbib, 1998), by connecting this original model with instances of F5 mirror
neurons. Schematics of both FARS and MNS1 models are illustrated in Figure
2.16. In order to be able to map sensory and motor representations into a sin-
gle mirror area, this system-level model proposed an invariant or goal-centered
representation of the possible interactions between the hand and objects: the
hand-state hypothesis. Although this hypothesis can be seen as an over simpli-
fication of the problem of understanding the process of visual information, it is
in accordance with neurophysiological data related to mirror neurons. Indeed,
these neurons do fire with respect to a goal-centered reference frame.

Interestingly, this modeling study suggests that the original function of the
mirror system is to provide appropriate visual feedback for on-line control of
manual object grasping. The mirror property which seems to be related to
imitative abilities would have developed later. Further, the important contri-
bution of this work to the field is that Oztop and Arbib (2002) showed that
the mirror neurons within F5 can be trained to recognize actions already in
the motor repertoire of the observer, assuming that this sensorimotor repertoire
was learned by self-observation prior to the recognition of others actions. The
ability of the system to further generalize to anyone performing the movements
is allowed by the invariant representation, i.e., the hand state.

Recently, the second version of this model, the MNS2, was proposed by
Bonaiuto et al. (2007). MNS2 extends MNS1 by means of three major im-
provements. First, the new model uses a recurrent architecture and a learning
paradigm that are biologically more plausible than that of the original model8.
Moreover, MNS2 is capable of addressing data on audio-visual mirror neurons
and on the contextual responses of mirror neurons when the target object was
recently visible but is currently hidden (Bonaiuto et al., 2007).

A Dynamical System Approach

Recently, another connectionist modeling study adopted a dynamical system
approach to imitation inspired by the mirror system was proposed by Erlhagen,
Mukovskiy, et al. (2006); Erlhagen, Mukovsky, and Bicho (2006). The model
was primarily built following the theory of Goal-Directed Imitation (GOADI)
discussed above, in that the model is biased toward reproducing the outcome of
an observed action sequence rather than reproducing the exact action means.
The model architecture is composed of building blocks where each of them
represents the functionality of neurons belonging to a specific brain area.

8MNS1 used back-propagation with some time-dependent preprocessing in order to learn
the sensorimotor associations (Oztop & Arbib, 2002), while MNS2 applies the well-known
hebbian rule (Bonaiuto et al., 2007).
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Figure 2.17: Illustration of
a connectionist model which
has been proposed to account
for goal-directed imitative abil-
ities. (Adapted from Erlhagen,
Mukovsky, and Bicho (2006))

Similarly to the MNS1 model, the consid-
ered brain areas and their connectivity are
fundamentally based on current biological ev-
idence of the structure of the mirror system,
i.e., the network formed by areas F5, PF and
STS (See Figure 2.17). In addition, Erlhagen,
Mukovskiy, et al. (2006) also considered prior
task knowledge and contextual information in
order to allow the model, having a dissimi-
lar embodiment, to reproduce the perceived
or inferred end-state of a grasping-placing se-
quence. Interestingly, the model implemen-
tation shows that, in the case where visual
information is incomplete or where environ-
mental constraints changes across trials, the
motor simulation loop within the mirror net-
work is a powerful mechanism to achieve im-
itation, and, by extension, to endow robots
with the ability to understand the motor in-
tention of other agents. Considering the tech-
nical aspects of this model, the Dynamic Field
Theory9 (Erlhagen & Schöner, 2002; Schöner,
2002) consisting of continuous neural representation was adopted and a hebbian
learning rule was used in order to learn sensorimotor associations.

Grounding the Mirror System on the Motor Production System

Next, while the studies presented above mainly focus on a high-level con-
nectionist representation, other approaches consider the mirror system as an
integrative part of the motor system and even show how mirror properties may
naturally emerge from the modular architecture of the motor control process.
Two major streams of models were developed. While one of them is more con-
cerned with imitation at a behavioral level (Demiris & Hayes, 2002), the other
is more strictly grounded on motor control mechanisms (Wolpert et al., 2003).
Nevertheless, both model are very similar in their architecture. Their key ingre-
dients are the modularity and the distributed cooperation and competition of
several internal models. As shown in Figure 2.18a, each of these internal models
is composed of a forward model associated with an inverse model, which can
also be considered as a composition of a predictor and a controller, respectively.
Because of the existence of multiple predictor-controller pairs, the main idea
is that each controller competes against the others in order take the control

9Since this approach was also adopted in this thesis, a detailed description of this approach
is given in Chapter 3.
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Figure 2.18: The modular architecture for motor control, action recognition and imi-
tation which was proposed by Demiris and Hayes (2002); Wolpert et al. (2003). a)
In motor control mode, the desired trajectory is fed to all the internal inverse con-
trollers which compute in parallel possible motor commands. These commands are
next combined and send to to the body muscles. Simultaneously, each forward model
associated with a inverse controller predicts the next state of the system, which is
further compared with real sensory feedback. The errors are normalized, and the re-
sulting responsibility signals are finally sent back to the motor selection process to
favor the best controller. b) In observation mode, the trajectory observed from the
demonstrator is fed to the inverse controllers computing what would have been the
possible motor commands to reproduce that movement. These commands are then
fed to the corresponding forward models and their prediction is then compared with
the actual state of the demonstrator. The pair of inverse and forward models having
the highest responsibility signal is the one which would reproduce the trajectory best.
(Adapted from Demiris and Hayes (2002); Wolpert et al. (2003); Oztop et al. (2006))

over the system. This competition is made possible by assigning a relevance
value to each controller proportional to the accuracy of its associated predictor.
This value is often described as a responsibility signal (Demiris & Hayes, 2002;
Wolpert et al., 2003). Furthermore, it important to note that the controller-
predictor pairs are adaptive, what allows the system to learn new and refine
known control strategies or movements.

From now on, this type of model is capable of producing actions. However,
as will be described next, this model can also be used for imitation and action
recognition. The only problem, common to many others computational studies,
is that this architecture requires the visual information of the observed move-
ment to be converted into a reference frame compatible with the inputs of the
system in normal conditions, i.e., the state variables. First, during movement
observation, each controller generates the motor command required to achieve
the demonstrated trajectory but none of them is actually executed. In order
to close the mental simulation loop, the output of each controller is fed into
to the predictor it is paired with. As a final step, the parallel estimation of
the possible next states of the demonstrator is then compared with the actual
observed next state so as to obtain prediction errors. These signals can hence
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further indicate which of the controllers would perform best the same movement
as that executed by the demonstrator, and hence might be considered analogous
to mirror neuron activity (Demiris & Hayes, 2002; Wolpert et al., 2003; Oztop
et al., 2006). This additional use of this type of models, illustrated in Figure
2.18b, provides some similarities to the mirror neuron system, which has also
been recently suggested to be part of a brain motor control system involving
inverse and forward models of the body (Miall, 2003).

As rapidly mentioned above, the models of Demiris and Hayes (2002) and
Wolpert et al. (2003) do exhibit one important difference. The model of Demiris
and Hayes (2002) considered only kinematic variables in order to encode move-
ments or behaviors, whereas the work of Wolpert et al. (2003), which con-
centrates on motor variables, was derived from an earlier model developed for
understanding how the brain do motor control, namely the Modular Selection
and Identification for Control model (MOSAIC) (Wolpert & Kawato, 1998).

Extensions of these Models

Later, subsequent studies have extended these models. First, the Hierarchical
Attentive Multiple Models for Execution and Recognition (HAMMER) was pro-
posed (Demiris & Johnson, 2003; Demiris & Simmons, 2006). A new control
module was added on top of the behavioral controllers so that the HAMMER
model can learn new actions composed of primitives already present in the mo-
tor repertoire. In addition, this hierarchical structure was shown to provide
a mechanism for the top-down control of attention during action perception.
In agreement with the theory of goal-directed imitation (GOADI), significant
performance gains in terms of resource allocation were reported.

In parallel, the Mental State Inference model (MSI) was developed (Oztop
et al., 2005). This computational model aims at providing a system with the
ability to infer the mental state of others which is built upon the circuitry
that subserves sensorimotor control. The major hypothesis of this work is that
cortical regions, in particular monkey mirror areas, are involved in executive and
predictive motor processes (Miall, 2003) such as in the MOSAIC (Wolpert et
al., 2003) and the HAMMER model (Demiris & Johnson, 2003). By assuming
that these brain areas can produce mental simulation of movements, they can
also provide the capacity to understand the movements performed by others.
However, in contrast to the preceding models, the MSI model involves only
a single arrangement of paired inverse and forward models. Therefore, the
mechanisms of mental state inference is based on a gradient search within the
behavioral space, which sequentially affects the internal model. As long as
the prediction of the mental simulation loop is not good enough, the search
continues, until the most appropriate mental state is found. The analysis of the
system behavior showed that mental states may be inferred from the observation
of more or less complex movements. Thus, Oztop et al. (2005) showed that
the computational strategy developed for sensorimotor control is effective in
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Figure 2.19: The mental state inference model (MSI): Upper panel: the MSI model is
based on the illustrated visual feedback control organization. Lower panel: observer’s
mental state inference mechanism. Mental simulation of movement is mediated by uti-
lizing the sensory prediction from the forward model and by inhibiting motor output.
The difference module computes the difference between the visual control parameters
of the simulated movement and the observed movement. The mental state estimate
indicates the current guess of the observer about the mental state of the actor. The
difference output is used to update the estimate or to select the best mental state.
(Adapted from Oztop et al. (2005))

inferring the mental states of others.

Developmental Approaches to Imitation

In this section, another class of models are described. The approach which
they adopted consists in considering the mirror system as the result of the
development of the internal sensorimotor loops. These works closely follow the
hypothesis that self-observation is the principle to bootstrap imitation (Piaget,
1978). Initially, an internal multisensory and motor representation is build from
self-observation, allowing an agent to execute and monitor its actual behaviors.
By generalizing the visual inputs entering this representation, representing the
actions of others becomes possible, which is further used to trigger imitation.

A Hebbian View of the Mirror System

First of all, a high-level theoretical study was proposed by Keysers and Per-
rett (2004) who described an extremely simple system-level hebbian model in
order to explain the emergence of the mirror system. This model only addresses
the network composed of the monkey mirror areas, i.e., F5, PF and STS. Bas-
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for neurons selective for precision grip and whole hand prehension, respectively. Dur-
ing self-observation of PG or WHP, F5 activity leads to motor output, and thereby
to visual re-afferent activation of the corresponding STS-PG neurons (dashed arrow).
Hebbian learning then builds strong connections between neurons sharing similar prop-
erties, from which mirror sensitivity emerge (bottom). b) In this example, neurons
sensitive to upwards and downwards movements are considered. During the execution
of upwards movements, the visual consequences of the action activate upwards STS
neurons. At the same time, a PF/STS corollary discharge conveys the motor and
kinesthetic information regarding the action to the inhibitory interneurons controlling
STS neurons sensitive to both upwards and downwards motion. Synchrony with the
visually evoked activity occurs only in the upwards neurons, as the monkey is currently
viewing his upward movement, resulting in hebbian enhancement of only the match-
ing synapses. In addition, the inhibitory interneurons receive also visual input, and
hebbian learning occurs between PF and STS. As a consequence, STS upward neuron
gets slowly inhibited by self-motion. (Adapted from Keysers and Perrett (2004))

ing their work on current neurophysiological data, the authors basically describe
that the mirror properties of the neurons found in these areas emerge, from a
pure motor or visual sensitivity to a multisensory representation through devel-
opment. They also mention an hypothesis as to how these neurons specialize,
by refining their internal representation for specific actions. based on known
anatomical connections across these areas Keysers and Perrett (2004) proposed
an associative hebbian network given in Figure 2.20, through which the monkey
brain may learn to understand the actions of others by associating them with
self-produced actions. An additional interesting issue was also addressed. This
network may simultaneously learn to discriminate its own actions from those of
others. The important hypothesis raised by this study is that the mirror system,
despite being central to imitation and social communication, probably evolved
originally for different purposes such as the monitoring of the visual feedback
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to improve motor control and the reduction of redundant visual information
(Keysers & Perrett, 2004; Oztop et al., 2006).

Embodiment and Imitation

Further, a developmental approach was followed by Andry et al. (2004) in
order to provide robots with an embodied and autonomous ability to learn their
internal sensorimotor mapping. The core of this model is a neural network
which associates, by hebbian learning, visual, proprioceptive and motor signals
related to the movements produced by the robot. This mainly allows to endow
the system with a common multisensory and motor representation which also
reduces the high dimensionality of the inputs. Similarly to the other neural
models applying the hebbian paradigm within associative network, when ap-
plying partial sensory inputs, missing data can be completed and hence motor
actions can still be driven accurately. Then, by means of the internal dynam-
ics of this mapping, various sensorimotor behaviors such as tracking, pointing,
spontaneous imitating, and sequences learning can then be obtained on their
robotic platform. Indeed, the important idea that the work of Andry et al.
(2004) comforts, is that imitative and sensorimotor capabilities may co-develop,
what allows the acquisition and the building of increasingly complex behavioral
abilities (Piaget, 1978).

Next comes the computational study of Weber et al. (2006), who described
a hybrid generative and predictive neural model of the motor cortex where im-
itation emerge from the internally learned sensorimotor loops. The generative
part of their model consists of building a topographically organized hidden rep-
resentation through hierarchically directed cortico-cortical connections from the
sensory inputs trained by an unsupervised learning method. Similarly to the
work of Andry et al. (2004), a common multisensory and motor representation
is produced. Complementarily, predictive abilities were added to the model by
training lateral intra-area and inter-area cortical connections to predict the fu-
ture state of the network using asymmetric hebbian rule. By closing the loop
and avoiding overt motor execution, this predictive part of the model can also
mentally simulate longer perception and action sequences. Finally, by consid-
ering the hidden layer of the model as a shared representation in which visual
information related to other agents is also fed into, imitation abilities have shown
to develop (Weber et al., 2006).

Imitation in the Cortical Hemispheres

A quite different approach was adopted by Petreska and Billard (2006), who
investigated the neural mechanisms of visuo-motor imitation in humans by con-
sidering imitation deficits following callosal brain lesions. The neural network
developed in this study also hold an internal multisensory representation which
is learned through motor babbling. Importantly, when impaired with respect to
callosal lesions reported in human patients (Goldenberg, Laimgruber, & Herms-
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dörfer, 2001), this model was shown to account for the scores found in a clinical
examination of imitation. Interestingly, the work by Petreska and Billard (2006)
is one of the rare study which considers inter-hemispherical processes. In ac-
cordance with recent brain imaging studies, the strong proposal of this model
is that the processes involved in active imitation are primarily localized in the
left hemisphere.

High-Level Imitation

In this last section, attempts to model higher cognitive functions related to
imitation are presented. Higher cognitive functions are meant here to corre-
spond to those requiring forms of reasoning which integrate for instance task
knowledge, prior information, mental inferences and abilities for collaborative
work. Although some of the previous models do integrate some of these skills,
the studies presented here differ from the fact that they try to consider them
as a whole within an integrated framework. However, since modeling together
these high-level cognitive functions with neural networks may be difficult, the
approach adopted by the models that will be described below is more theo-
retical in the sense that a probabilistic method was adopted. Nevertheless,
probabilistic models have already provided interesting insights for explaining a
large number of neurophysiological and behavioral phenomena (Van Beers et
al., 2002; Pouget et al., 2003; Ma, Beck, Latham, & Pouget, 2006; Yuille &
Kersten, 2006). For instance, several studies suggest that neural representa-
tions may actually encode probability distribution and implement the Bayes’
theorem. Therefore, this would allow the nervous system to solve a variety of
problems by combining prior knowledge and contextual information with its
current state. Moreover, such a probabilistic approach can also help remove the
noise present in the sensory and neural processing structures.

One of the earliest modeling studies which addressed imitative behaviors
with a Bayesian methodology was proposed by Rao, Shon, and Meltzoff (2004).
The authors of this work emphasized the importance of probabilistic reasoning
along the development of imitative abilities. Indeed, they suggested how the
different developmental stages of imitation can be associated with a Bayesian
approach of increasing complexity. Furthermore, they also stressed the advan-
tage of this probabilistic approach to imitation learning. Indeed, unlike super-
vised learning methods usually adopted in such tasks, a system endowed with a
Bayesian reasoning process can deduce how to resolve tasks rather than simply
learn to reproduce movements by demonstration.

In a later study, Cuijpers et al. (2006) developed a similar approach, but
which aimed at understanding computational mechanisms responsible for goal-
directed imitation and inference in tasks requiring collaboration between two
agents. Similarly to the work of Rao et al. (2004), this model integrates possible
actions and goals within a probabilistic framework which allows inferring the
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actions of others. However, Cuijpers et al. (2006) also considered explicitly
actions goals, task knowledge as well as personal preference, which provided to
their model interesting properties useful for accomplishing collaborative tasks.
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Summary

The modeling work in this thesis is largely inspired by the studies presented
above. Although it primarily follows the connectionist approach, which models
the brain as a collection of interconnected and interacting neural networks, this
thesis is distinct from some of these models in several ways. For instance,
the general purpose of the MNS1 and 2 models is to reproduce the activation
patterns of the mirror neurons, but in this thesis this is not considered an
end in itself. Instead, this thesis focuses on the properties of these groups
of neurons, with the goal of deciphering the cortical pathways that mediate
imitative behaviors.

Furthermore, most of the approaches reviewed here - while inspired by neu-
rophysiological evidence - address imitation in a functional way in order to
achieve other goals (for instance, to endow robots with imitative abilities). One
of their primary aims is to deal with the issue of how imitative skill could be
learned, either from scratch or from a predefined cognitive system; these studies
also try to show how neural models can produce imitative behaviors. Because
of this application-based approach, most of these studies do not provide predic-
tions that can be directly tested experimentally. In contrast, the present thesis
focuses explicitly on the brain mechanisms responsible for imitative behaviors,
including neural processes at a single network level as well as at the level of
cortical pathways. This work goes beyond current knowledge by proposing sev-
eral alternative cognitive routes that might mediate imitation, in combination
with sound experimental paradigms that can be used to validate or refute the
proposed hypotheses. Another major difference of the approach adopted here
is that it does not focus on the issue of learning. Indeed, the experimental re-
sults that the present work attempts to reproduce were often obtained in tasks
which do not explicitly require any form of learning - that is, this work primarily
addresses the automatic side of imitative behaviors.

As mentioned previously, two possible representations in the models were
adopted in order to trigger imitative actions: one in which action representations
were invariant, and one in which the system variables for both the demonstrator
and the imitator were encoded within the same reference frame. It remains to
be explained how the brain can compute such representations from its sensory
inputs. Furthermore, the question of how discrimination between the self and
others occurs has not been addressed here. Most of these models basically
consider a two-phase processing scheme. While one of them drives the system
in an action-recognition mode, the other triggers the reproduction of actions.
Switching between modes is performed artificially. Self-related signals, as well
as those generated by others, are usually considered identical. However, the
nervous system is capable of disentangling these signals, which allows it to
differentially recruit the shared representations, depending on the ownership of
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the processed signals.
By evaluating the details of the computational tools adopted here, this work

is more in line with that of Erlhagen, Mukovsky, and Bicho (2006) who used
the dynamic neural field approach to model the components of their network.
The models described in this thesis, which are used to investigate the neural
processing pathways responsible for imitative behaviors, are also built using
such neural network models. The next chapter therefore reviews the state of
current knowledge about this class of models.
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Chapter 3

Artificial Neural

Networks

The general methodology adopted by computational modelers consists of tak-
ing inspiration from experimental data in order to produce models of the

phenomenon in which they are interested. Since the principal aim of this thesis
is to develop sound models of the neural mechanisms that underlie human im-
itation, artificial neural networks were naturally chosen as ideal computational
tools for investigating the brain processes involved.

The present chapter describes the fundamental modeling tools adopted in
this thesis. After a brief introduction related to computational neuroscience, a
rapid description of the artificial neural network approach is provided - including
models of single neurons as well as of some neural network models that were
proposed during the past few decades. The core of this review defines and
describes the class of neural models (neural fields) on which the work presented
here is primarily based, with a focus on some of their important properties as
well as their biological plausibility.

3.1 Computational Neuroscience

Computational neuroscience is an multidisciplinary approach that links to-
gether diverse research fields such as neuroscience, cognitive science, computer
science, physics and applied mathematics. It investigates and aims at under-
standing the mechanisms and functions of the nervous system using theoretical
and computational methods. The models developed along this discipline pri-
marily focus on replicating existing data by trying to stick as close as possible to
biology. Consequently, they may provide predictions related to hypotheses that
have not been experimentally tested yet, or that could not be verified in real
biological systems. Computational neuroscience encompasses various subdisci-
plines whose respective research focus lies within different abstraction levels,
depending on the primary aims of each study. Indeed, the modeling of the com-
plex system which is the brain, has to be done through multiple levels, the art of
scientific explanations being to find the right level of abstraction rather than the
detailed reproduction of nature (Trappenberg, 2005). Given a phenomenon to
explain, considering a too high-level approach may not allow to get the relevant
mechanisms underlying it, but a too low-level approach may also be inappropri-
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Figure 3.1: a) Illustration of a biological neuron and its subparts. b) An artificial
neuron, as proposed by McCulloch and Pitts (1943), shares several structural and
computational similarities with real neurons. c) Activation functions transforming
the membrane potential of the artificial neuron into a firing rate as usually found in
the literature (Adapted from Trappenberg (2005)).

ate since it may provide too much details, hence obscuring the important ones.
For instance, in order to model the motion of an apple falling from a tree, it is
unnecessary to apply the general rule of gravitation and the theory of relativity.
The Newton’s law is clearly more appropriate in this particular case.

As stressed above, computational neuroscience is deeply grounded on current
neural evidence . This discipline tries to links the huge amount of experimental
data together in order to provide a coherent view as to how the nervous system
works. One particular trend in this field is to understand the dynamics of single
neurons, and also how they communicate with their neighbors. Research studies
attempt to shed light on the mechanisms underlying neural processing through
realistic descriptions of the physiology and dynamics of neurons. These works
try to capture the essential features of this biological system which require to
consider membrane currents, protein and chemical coupling and the mechanisms
of synaptic modification.

However, when coupling many neurons together, the amount of system pa-
rameters becomes huge. Therefore, simplified models of neurons have also been
proposed in order to still be able to obtain a clear understanding of the neural
dynamics at the neural ensemble level. Although the knowledge of the precise
neural mechanisms occurring at the cellular level is fundamental, the present
review of the artificial neural network literature will not address these low-level
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processes. Instead, since the aim of this thesis is to understand how large corti-
cal networks may be at the origin of high-level behaviors, this review will rather
concentrate on artificial neural networks composed of simplified models of neu-
rons which are suggested to still capture the essential dynamics of large neural
ensembles. In the following, some important neural models will be described
as well as the class of networks that was adopted in this thesis, namely, the
Continuous Attractor Neural Networks (CANN) or Dynamic Neural Fields (DNF).

3.1.1 Artificial Neural Networks

The fundamental processing unit of the nervous system is the neuron. Neu-
rons communicate with each other using action potentials or spikes, which are
pulsed electrical signals. As illustrated in Figure 3.1a, a biological neuron is
composed of several parts. The soma, or the cell body, is the core of the neu-
ron. It integrates the electrical signals incoming from the other neurons through
its dendrites. When a sufficient amount of spikes enters the neuron within a
short period of time, the membrane potential of the neuron may reach its firing
threshold. At this moment, the stored energy is transformed into a spike which
is emitted by the neuron through its axon. When the spike reaches an axon
terminal connected to the dendrite of another neuron, i.e., a synapse, the spike
is transformed into a chemical signal which is in turn re-transformed into an
electrical signal within the dendrite of the target cell.

The biochemical mechanisms of information transduction of neurons were
incorporated in several detailed models of neurons (Hodgkin & Huxley, 1952;
Gerstner & Kistler, 2002). These models of spiking neurons are currently stud-
ied with great attention since they may provide a better understanding of several
fundamental mechanisms of the brain such as those mediating learning (Abbott
& Nelson, 2000; Melamed, Gerstner, Maass, Tsodyks, & Markram, 2004). How-
ever, when considering large groups of neurons or cortical networks, compu-
tational modelers sometimes prefer to study the dynamics of neural networks
with simpler models of neurons which consider the average firing rates of these
cells rather than their individual spikes. Indeed, under certain conditions, a
rate code (McCulloch & Pitts, 1943) has been shown to adequately represent
the average response of an ensemble of neurons (Gerstner & Kistler, 2002). In
this thesis, since the principal aim consists of understanding the mechanisms of
a high-level cognitive function that is imitation, the simplification provided by
the rate code model of the neurons was adopted.

The schematic of such an artificial neuron is shown in Figure 3.1b. It can
receive several inputs denoted by x1, x2, . . . , xn which are respectively modu-
lated by synaptic weights w1, w2, . . . , wn. The artificial neuron then sums all
these weighted inputs into its membrane potential u. Finally, the output firing
rate of the neuron depends on a function f of membrane potential, namely the
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activation function. Formally, the output y of a neuron is given by

y = f(u) where u =
n∑

i=1

wi xi (3.1)

or in a more compact vectorial form

y = f(�wT �x) (3.2)

where �w = (w1, w2, . . . , wn)T and �x = (x1, x2, . . . , xn)T correspond to the
synaptic weights and input vectors. The activation function f has been de-
fined in different ways. The most commonly used activation functions are given
in Figure 3.1c. The choice of either function usually depends on problem to be
solved and on the mathematical analysis to be performed. As can be seen from
Equ. (3.1), a neuron alone can not perform any really complex computations.
However, by combining and connecting neurons together, much more interest-
ing properties can emerge from their interactions. Indeed, the computational
outcome of neural networks can be greater than the sum of their parts.

Examples of Artificial Neural Networks

During the past decades, several neural network architectures which could be
separated in several classes were developed. For instance, the well known multi-
layer perceptrons belong to the class of feed-forward neural networks. Interest-
ingly, these networks were shown to be capable to learn almost any non-linear
mappings of their inputs. They could be seen as universal function approxi-
mators (Rumelhart, Hinton, & Williams, 1986; Hornik, Stinchcombe, & White,
1989). This important property has nowadays led multi-layer perceptrons to
become a standard tool in computer science and engineering.

However, when trying to mimic brain neural processes, this type of neural
networks were often criticized as not being biologically plausible. Indeed, real
cortical networks are intensively recurrent. Furthermore, because of the exis-
tence of feedback loops within this class of network, different approaches, such as
the dynamical systems theory, has mainly been adopted in order to understand
them. Among this class of networks, Winner-Take-All were proposed, which,
by means of recurrent inhibitory connections, were shown to exhibit several in-
teresting properties. Of major interest, principal and independent component
analysis of input data, (PCA) and (ICA) respectively, may be obtained by this
network structure (Oja, 1992; Dumitru, King, Nandedkar, & Oja, 1997).

A similar network model also based on a winner-take-all architecture was
proposed by Kohonen (1990), better known as the self-organizing map (SOM).
Motivated by how sensory information such as visual information is represented
and processed in the brain, SOMs are intended to produce a low dimensional
representation of high-dimensional training data while preserving the topological
properties of the input space. The interesting property of this model is that it
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a) b)

Figure 3.2: a) Point attractors and associated basins of attraction as may be found
in associative neural networks. Each point would then correspond to a memorized
input pattern toward which the network may converge according to its initial state.
b) Continuous line attractor which could be produced by increasing the number of
neurons in the network, as well as the number of point attractors. This form of neural
dynamics is usually found in neural fields.

has been shown to reproduce patterns of neural sensitivity found in several
areas of the brain such as the visual and motor cortices (Swindale & Bauer,
1998; Aflalo & Graziano, 2006b).

Another class of competitive recurrent networks are associative networks
such as that proposed by Hopfield (1982). Associative networks are meant to
store neural activation patterns in their recurrent connectivity by means of the
Hebb’s rule for synaptic modification (Hebb, 1949). The interesting feature in
associative networks is that, from partial or noisy information, the system can
dynamically retrieve the whole stored pattern corresponding best to the actual
inputs.

From Associative Networks to Continuous Attractor Networks

Recurrent networks can be seen as dynamical system which may exhibit vari-
ous behaviors such as attractor dynamics, limit cycles, and chaotic behavior. As
illustrated in Figure 3.2a, in an associative network, patterns are ideally stored
in the system as point attractors. A partial or noisy input pattern corresponds
then to a different point in the state space, located in the basin of attraction of
a given pattern. When the network evolves, its state simply moves toward the
closest attractor. Interestingly, as the number of neuron in a Hopfield network
increases, the number of possible attractor may increases. Therefore, it would
be possible to build a continuous attractor such as that shown in 3.2b. This
is exactly the approach followed by another class of models, namely the Con-
tinuous Attractor Neural Networks (CANN) or Dynamic Neural Fields (DNF).
While point attractors may be useful for building discrete associative memo-
ries, continuous attractor network may be more useful for building short-term
memories (Trappenberg, 2005). Indeed, neural fields can dynamically represent
a continuum of states, and hence any variable value of a given space. By this
attractor dynamics, the state of the actual input can thus be remembered as
long as no external perturbation affects the system. This property of neural
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fields is only one among many others. As will be mentioned in the next section,
neural fields are powerful tools endowed with many fundamental properties for
exploring the neural mechanisms and dynamics of the nervous system.

3.2 Neural Fields

Neural fields or continuous attractor neural networks (Wilson & Cowan,
1973; Amari, 1977; Erlhagen & Schöner, 2002; Trappenberg, 2005) share many
similarities with all the three classes of recurrent networks mentioned above. As
will be described further in more details, neural fields are an implementation
of a winner-take-all mechanism, are topographically organized by means of a
reciprocal connectivity between its elements, and, by their attractor dynam-
ics, can be used a form of memory. A key assumption made when modeling
cognitive functions using neural fields is that a variable is encoded in the net-
work in a distributed manner. All neurons in the field are preferentially tuned
to a different instance of the variable represented in the network. Moreover,
the recurrent connectivity of these networks have primarily a center-surround
excitatory-inhibitory characteristic, where neurons sharing similar firing prop-
erties cooperate by exciting themselves and where neurons distant in their pref-
erential tuning inhibit each other. This inter-neuron relationship is at the basis
of their fundamental ability to allow one single localized activity packet, also
known as bump or pulse solutions, to emerge from this neural implementation
of a winner-takes-all operation (Wilson & Cowan, 1973; Amari, 1977; Erlhagen
& Schöner, 2002; Trappenberg, 2005).

In the past decades, these mathematical tools were increasingly used in order
to model and implement brain cognitive functions. Indeed, in addition to their
biologically plausible structural relationship with real cortical neural ensembles,
their numerous computational properties have made them very attractive to
the computational neuroscience community. For instance, these models, orig-
inally proposed to explain the formation patterns of cortical representations,
were then applied to other research topics such as visual processing (Ben-Yishai
et al., 1995; Mineiro & Zipser, 1998; Giese, 2000), visual attention (Rougier,
2006; Vitay & Rougier, 2006), spatial navigation (Zhang, 1996; Xie et al., 2002;
Redish, 1999; Stringer et al., 2004), memory (Compte et al., 2000; Rolls et
al., 2002), motor control (Kopecz & Schöner, 1995; Lukashin et al., 1996), de-
cision making (Kopecz & Schöner, 1995; Erlhagen & Schöner, 2002; Schöner,
2002), sensorimotor transformations (Salinas & Thier, 2000; Deneve et al., 2001;
Meńard & Frezza-Buet, 2005), stimulus binding (Wersing et al., 2001), param-
eter estimation (Deneve et al., 1999; Pouget et al., 2003), and even higher-level
cognitive functions such as imitation (Andry et al., 2004; Erlhagen, Mukovskiy,
et al., 2006; Erlhagen, Mukovsky, & Bicho, 2006).

In the following, after a rapid mathematical formulation of the structure and
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dynamics of neural fields, a review of their principal properties will be given.
The aim of this section is to provide the reader with a flavor of the powerful tools
for cognitive modeling that are the continuous attractor networks. Rather than
being too formal, this review is intended to describe qualitatively the numerous
computational properties embedded in this class of neural networks. The reader
interested in the proofs of the mathematical properties presented here is instead
suggested to refer to the associated literature.

3.2.1 Definition

Neural fields are recurrent neural networks developed in order to address
neural computations in the continuous domain. Although neurons are discrete
elements, when an important number of cells is considered, a mathematical
approximation in the continuous domain has been shown to be an interesting
simplification for understanding the neural dynamics of large networks (Amari,
1977; Gerstner & Kistler, 2002; Wilson & Cowan, 1973). In addition, neural
fields were primarily designed using a simplified model of neuron, similar to
that presented earlier, which considers the average firing rate as a means to
transmit information (McCulloch & Pitts, 1943). However, since this class of
model also assumes a continuous-time integration of information rather than a
discrete time one, the model of neuron used in this class of models is slightly
different. Instead of integrating instantaneously their external inputs, the cells
do it progressively through time according to their membrane time constant.
As a consequence, when a constant input is applied to a neuron, it takes a
non-negligible amount of time for the neuron to integrate its input. This type
of artificial neuron was named a leaky-integrator neuron, which should not be
confused with the leaky-integrate and fire model of spiking neurons. Basically,
the dynamics of a leaky-integrator neuron can be written as follow:

τ u̇(t) = −u(t) + x(t) (3.3)

where u(t) corresponds to the state of the membrane potential of the neuron, τ

to its time constant, and x(t) to the global external inputs entering the cell.
As mentioned earlier, a dynamic neural field is a topographically organized

network. By topographically organized, it means that the cells composing the
neural field share a preferential tuning to a set of parameters. Moreover, each
neuron is preferentially tuned to a specific instance of these input parameters,
often called the preferred direction of the neuron. Importantly, the preferred
directions of all the cells are uniformly distributed in the input space. A con-
tinuous neural population is defined by an ensemble of neurons where each cell
is preferentially tuned to a preferred direction �r uniformly distributed along Γ,
which corresponds to the parameter space such that �r ∈ Γ. Specific examples
of possible parameter spaces Γ will be given further in the text.
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A continuous attractor neural network is also characterized by the strong
recurrent interactions among its elements. These interactions follow a center-
surround excitation-inhibition pattern where neurons sharing a similar prefer-
ential tuning tend to excite each others, whereas inhibitory interactions take
place between neurons having a large difference in their preferential tuning. In
addition, this interaction kernel must be invariant across all neurons. Indeed,
this condition ensures that the attractor formed by the network is continuous.
Non-uniformity of the recurrent usually produces discrete attractors such as
those found in Hopfield networks. Several interaction kernels have been used in
the literature. Importantly, gaussian and mexican-hat shaped kerned functions
were considered. These two weight functions are illustrated in Figure 3.3 and
can respectively be written as

WR(�r ′, �r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α
[
exp
(
−‖�r−�r ′‖2

2σ2

)
− δ
]

for a gaussian kernel

α
[
exp
(
−‖�r−�r ′‖2

2σ2
E

)
− αI exp

(
−‖�r−�r ′‖2

2σ2
I

)
− δ
]

for a mexican hat kernel

(3.4)

WR(�r ′, �r) denotes the synaptic projection from the neuron with preferred direc-
tion �r ′ to that sensitive to �r ′. The index R stands for recurrent. α and αI are
amplification factors and δ an offset, allowing the weights to have an inhibitory
component. In the gaussian kernel, σ corresponds to the breadth of the inter-
action weights, whereas σE and σI in the mexican-hat kernel are, respectively,
the breadth of the excitatory and inhibitory gaussians forming the hat.

Practically, however, the use of preferred direction distributed on an infinite
space is problematic since computer systems have limited resources. Moreover,
boundary effects also appear if the space of the parameters has limits. Indeed,
the recurrent interaction must be invariant so that the possible attractors of
the network form a continuum. Imposing limits on the neural space breaks
this symmetry, which usually results in stronger attractors at the boundaries.
An usual solution to these problems is to adopt periodical parameter spaces1.
The commonly used limited and periodical manifolds may be circles, hyper-
spheres and N -dimensional torus. Therefore the equation of the weights can be
rewritten by using a periodical gaussian function, better known as the Von Mises
distribution, so that the weight function is always continuous and differentiable.
In addition, by assuming that the parameter space consists of unitary vectors,
i.e., ∀�r ∈ Γ, ‖�r‖ = 1, the dot product can be used as a distance function rather
than the typical euclidian distance. Before rewriting the synaptic weights, let
define the parameter space Γ more precisely. The simplest form of periodical

1It is important to note that any kind of information can be encoded in a periodical space
Γ, since a unidimensional variable λ defined in an arbitrary domain can be transformed into
the considered space using a mapping function m(λ) → �r such that �r ∈ Γ and ‖�r‖ = 1.
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Figure 3.3: The interaction kernels encoded in the recurrent synaptic weights are
symmetric and of center-surround type. a) A gaussian-like weight kernel in one and
b) two dimensions. b) A mexican-hat like weight kernel in one and d) two dimensions.

closed manifold consists of the unitary hyper-sphere of dimension N. In this case
the preferred directions are distributed within

Γ = {�r ∈ R
(N+1) | ‖�r‖ = 1} (3.5)

When N = 1, this manifold is simply a circle. Next, in order to follow the same
notation to define a toroidal space of dimension N , the preferred directions �r

have to be decomposed into N sub-vectors such that �r = (�r1, . . . , �rN ). Then,
the N -dimensional toroidal space can be defined as

Γ = {�r = (�r1, . . . , �rN ) | �ri ∈ R
2 and ‖�ri‖ = 1} (3.6)

As can be noticed, when N = 1, this manifold is also equivalent to a circle.
Next, the periodical gaussian function G(�r ′, �r, σ) which defines the interaction
kernel having breadth σ, between neurons preferentially tuned to �r ′ and �r,
respectively, is given by

G(�r ′, �r, σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
exp
(

�r·�r ′−1
2σ2

)
− e−1/σ2

]
/ (1 − e−1/σ2

)

if Γ is an hyper-sphere

∏N
i=1

[
exp
(

�ri·�r′
i−1

2σ2

)
− e−1/σ2

]
/ (1 − e−1/σ2

)

if Γ is an N -dimensional torus

(3.7)

Moreover, this function is normalized such that G(�r ′, �r, σ) ∈ [0, 1]. The recurrent

87



weights can here be expressed as a function of

WR(�r ′, �r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α
[
G(�r ′, �r, σ) − δ

]
for a periodical gaussian kernel

α
[
G(�r ′, �r, σE) − αI G(�r ′, �r, σI) − δ

]
for a periodical mexican hat kernel

(3.8)

Now that the recurrent interaction weights were defined, let consider the differ-
ential equation governing the dynamics of neural fields. It is given by

τ u̇(�r, t) = −u(�r, t) +
˛

Γ

WR(�r ′, �r) f
(
u(�r ′, t)

)
d�r ′ +

+x(�r, t) + h(t) (3.9)

where u(�r, t) is the membrane potential of the neuron with preferred direction �r

at time t. The non-linear activation function f can be any of those mentioned in
Figure 3.1c except the radial basis function. x(�r, t) corresponds to the external
input and h(t) to a global homogeneous input or resting potential. This non-
linear dynamical equation has many interesting properties for modeling cortical
cognitive functions which are described next.

3.2.2 Properties of Neural Fields

The development of the neural field approach started from the evidence that
sensory and motor information is represented in a distributed fashion within
populations of neurons influenced by an important amount of recurrent connec-
tions (Douglas, Koch, Mahowald, Martin, & Suarez, 1995). This computational
paradigm has been shown to be shared by several areas of the nervous system,
including proprioceptive receptors, such as muscle spindles (Ribot-Ciscar et al.,
2003), the motor cortex (Schwartz et al., 1988; Kakei et al., 1999; Cisek &
Kalaska, 2005), the visual cortex (Bienenstock, Cooper, & Munro, 1982), the
posterior parietal cortex (Batista et al., 1999; Scherberger & Andresen, 2003)
and the superior temporal sulcus (Ashbridge et al., 2000). This widespread
network structure has then be suggested to be a general architecture providing
high-level computational abilities to cortical neural ensembles. In the following
paragraphs, the most relevant properties of this class of network as well as their
implication for neurobiology are reviewed. But before starting, although most
of the properties, if not all, will be illustrated using a one-dimensional param-
eter space Γ, it is worth noting that they are nevertheless still valid in higher
dimensions (Taylor, 1999; Laing & Troy, 2003).

88



x

z

y

0
f (u(r,t))

p(t)

u(r,t) = 0

f (u(r,t))
u(r,t) 

r

x(r,t) 

p(t)

a) b)

x(r,t) ≠ 0 u(r,t) 

r

0

time

u(r,t) = 0 

c)

u(r,t)  

f (u(r,t))

s

0

u(r,t) 

Figure 3.4: a) Illustration of the resulting activity of a neural field which receives an
external input spatially localized at �s. In this example, the neural space Γ corresponds
to a circular space. For convenience, the visualization of this space is shown on a
line where both extremities should be seen as interconnected. Superimposed on this
figure, the population vector of the neural activity profile is also shown. b) The same
information than that shown in a) is displayed, but where the space in which the
network is defined corresponds to the surface of a sphere. This spherical representation
may be seen as a two dimensional surface which has been folded around a sphere. c)
Temporal evolution of the membrane potential of a circular neural field when a spatially
localized external input is applied. Because the activation function f was chosen to be
the linear threshold function, the region which is over zero corresponds to the actual
firing rate of the neurons. In order to help reading the figure, black contours were
drawn around the regions of positive activation, i.e., along the lines were u(�r, t) = 0.
Finally, the black strip indicates the period of time where the external input was
presented.

Single Cue Integration

As described in Equ. (3.9), a neural field can receive an external input x(�r, t).
Usually, the considered external inputs encode a variable �s ∈ Γ by means of a
representation having a shape similar to the recurrent connectivity profile. In
the present review, since periodic representation are assumed, an external input
is written as a periodic gaussian function of �r similar to that given in Equ. (3.8).
It gives

x(�r, t) = β(t)
[
G(�s, �r, σ) − δ

]
(3.10)

where β(t) is the input amplitude, and δ is a constant usually set so that x(�r, t)
is a zero-mass distribution2, i.e.,

¸
Γ

x(�r, t) d�r = 0. As illustrated in Figure 3.4,

2The external input x(�r, t) is considered to have a zero-mass distribution in order to clearly
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Figure 3.5: Temporal evolution of a neural field activity profile when the background
input is increased above the threshold which allows the network to produce a self-
sustained memory of the last seen input. The time during which the external input
x(�r, t) and the background input h(t) were presented to the network are represented by
the two the black strips on the left of the time axis. The same graphical representation
as in Figure 3.4c was used here.

an external input produces a unimodal increase of the population potential.
Since its shape is similar to the recurrent weights profile, it matches an element
of the continuous memory pattern of the continuous attractor neural network.
Note here that in almost all examples provided in this chapter, the activation
function f which was used consists of the linear threshold function defined as
f(y) = max(y, 0).

Decoding Population Codes: The Population Vector

As shown in Figure 3.4, the neural dynamics of neural fields is known to form
an attractor bump on the surface of the neural field through which this class
of networks is suggested to convey information. A typical read-out mechanism,
the population vector �p(t), has been suggested to measure the macroscopic ef-
fect of the joint activities of large sets of neurons on ensemble of real neurons
(Georgopoulos, 1996). It consists of a weighted summation of the firing activity
of each neuron with its preferred direction. Through the similarity of the repre-
sentation of neural fields with groups of biological neurons, the same decoding
mechanism is often applied to this class of models. The estimate �p(t) ∈ Γ of the
variable value encoded in the neural field can be written as

�p(t) =
˛

Γ

f
(
u(�r, t)

)
�r d�r

/ ∥∥∥∥
˛

Γ

f
(
u(�r, t)

)
�r d�r

∥∥∥∥ (3.11)

Since the distribution of the preferred directions is assumed to be uniform, it is
not necessary to consider more complex decoding techniques such as those using
optimal linear estimators as proposed by Salinas and Abbott (1994); Deneve et
al. (1999). In Figures 3.4a and b, where the activity of neural fields receiving
an unimodal external input is illustrated, the resulting population vector is also

distinguish the effects produced by the two types of input found in the equation describing
the network’s dynamics (Equ. (3.9)), i.e., x(�r, t), and h(t) which is constant along the whole
network. This is more a modeling constraint rather than a biological one.

90



u(r,t) 

r

0

time

u(r,t) 

r

0

time

Initial external input

Weak secondary input

Initial external input

Strong secondary input

a)

b)

Figure 3.6: Temporal evolution of the network’s activity profile when an input en-
coding a value different from that currently self-sustained is applied. a) The external
input is not strong enough to modify the internal representation. b) A stronger ex-
ternal input can however update the internal memory of the network. The strength
of the input which is necessary to update the memory usually depends on the param-
eters of the network. In this case, it simply needs to be capable of inducing a positive
activation packet on the surface of the field. The same graphical representation as in
Figure 3.4c was used here.

shown.

Self-Sustained Memory

Following from the internal dynamics of the neurons and their recurrent
connectivity, an input imposed to the field is not instantaneously integrated
by the cells. Similarly, when removing an external input, it takes time for
the network to relax to its resting activity. While this sort of phasic memory
effect can be observed in Figure 3.4c, an active memory maintenance can also be
realized by continuous attractor neural networks. As may have been noticed, the
effect of the second external input h(t) has not been described, yet. By setting
this external input, which will be called the homogeneous or the background
input, above a certain threshold depending on the model parameters, a self-
sustained memory of the last presented input variable can be observed (Salinas
& Abbott, 1996; Compte et al., 2000). This pattern of neural activation is
shown in Figure 3.5, where an external input is temporarily applied to the
network. By increasing the background activity, the neurons maximally firing
for the given input keep firing even in its absence. Interestingly, according to
neurophysiological evidence, this mechanism mediating short-term memory has
been suggested to be actually found in the brain (Compte et al., 2000)
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Figure 3.7: Neural fields have an intrinsic ability to reduce noise conveyed by their in-
puts. The same graphical representation as in Figure 3.4c was used here. a) Although
an increasing amount of noise is applied to the network’s input, the neural field can still
focus on the relevant information transmitted by its input. b) A snapshot at time t1
shows that the noise influencing the internal representation u(�r, t1) is low as compared
to that present in the input x(�r, t1). Moreover, the network faithfully keeps locked on
the noise-free original signal x̄(�r, t1). c) When the membrane potential of the neurons
initially representing a bell-shaped signal corrupted by an important amount of noise
relaxes, the network converges almost toward the original signal. d) As described by
Deneve et al. (1999), the neural field computes an nearly optimal maximum likelihood
estimation of the clean signal. Indeed, as can be seen, the membrane potential at time
t2 is almost equal to that at time t1 without noise.

Updating the Internal Representation

Next, although an active memory mechanism is useful for guiding behav-
iors going beyond a simple input-output information processing scheme, one
has to consider how this memory could be updated with new information and
how it may resist to eventual distractors. The intrinsic dynamics of continuous
attractor networks provide an extremely powerful embedded solution to these
issues. When the external input is removed and the neural field sustains the in-
formation conveyed by that input, an hysteresis-like dynamics can be observed.
While an extremely small input (and even noise) can activate the memory, in
order to modify the memorized internal representation, an input stronger than
a threshold determined by the parameters of the system must be applied to
the network (Compte et al., 2000; Erlhagen & Bicho, 2006). As mentioned
above, the self-sustained memory mechanism is mediated by the background
homogeneous input h(t). The minimal strength of the input which is necessary
for updating the information encoded by the network, is approximatively pro-
portional to that of the background homogeneous input. Figure 3.6 shows two
examples where a spatially localized input is applied to a neural field which is al-
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ready self-sustaining a previously memorized input. The first illustration shows
that a weak input is not sufficient to affect the memory, whereas the second
example depicts a successful update of the representation of the network.

Noise Reduction

The recurrent cortical architecture observed within neuronal ensembles is
believed to amplify and stabilize noisy or corrupted feed-forward synaptic input.
Computational studies addressing this hypothesis using neural fields have shown
that this property can effectively be reproduced in simulation (Salinas & Abbott,
1996; Deneve et al., 1999). When a noisy spatially localized input enters the
neural field, the dynamics produced by the recurrent connectivity drives the
network toward one of its attractors. Since these attractors are not or less
noisy, they compete with the external input and hence reduce its noise. An
illustration of this form of filtering is shown in Figures 3.7a and b.

Following from this intrinsic network property, Deneve et al. (1999) showed
that the noise reduction ability of this class of neural structure can be near-
equivalent to a maximum likelihood operation. An illustration of their finding
can be observed in Figures 3.7c and d. A noisy gaussian-shaped input is fed
to the network by means of a direct assignation of the membrane potential of
the neurons. Then, the input is removed and the network relaxes to one of its
predefined attractors. As shown in Figure 3.7d, the final profile of the neurons’
membrane potential corresponds quasi-perfectly to the original input without
noise. Consequently, this form of recurrent neural dynamics was suggested to
exist throughout the cortex so that neural ensembles could estimate in a near
optimal way the value of the variables encoded in the noisy activity which they
receive from other brain areas3 (Deneve et al., 1999; Wu, Amari, & Nakahara,
2002). Although the relaxation phase described above is not really plausible,
Deneve et al. (1999) pointed out that the recurrent process could be implemented
by a series of networks which are connected in a feed-forward manner, hence
capable of mimicking recurrent dynamics.

Non-Uniform or Noisy Distribution of Preferred Directions

In the previous paragraphs, noisy inputs were considered and neural field
were described to be capable to reduce this noise by means of their recurrent
connectivity. However, this connectivity was assumed to be free of noise. In-
deed, a continuum of attractors in a recurrent network only exists if the weight
interaction kernel is shift invariant. It has been shown that a small deviation
from this hard constraint produces drifts of the population response, especially
when the network is used as a self-sustaining memory (Zhang, 1996; Compte
et al., 2000; Stringer, Trappenberg, Rolls, & Araujo, 2002). As shown in Fig-
ure 3.8, noise in the synaptic weights creates point attractors instead of the
continuous attractor manifold. In this example, the network, built on noisy

3In the work of Deneve et al. (1999), the noise was drawn from a gaussian distribution.

93



Time
0 0u(r,t0) 

r

u(r,tn) 

rr

p(t)

a) Initial states b) Drifting population vectors c) Final states

t0 tn

Figure 3.8: Effects of noisy recurrent weights on the attractor dynamics. a) Initial
states which were imposed to the network. b) The temporal evolution of the popu-
lation vector corresponding to each initial states shows that noisy weights break the
continuum of attractors by producing discrete attractors shown in c). (Adapted from
Zhang (1996))

recurrent weights, was initialized with a self-sustained activity bump and then
evolved without any external influences. For several trials, the temporal evolu-
tion of the population vector was recorded and then displayed as lines shown
in Figure 3.8b. As can be seen, rather than keeping representing the original
information, the network activity packet drifts and converges toward one of the
point attractor produced by the noisy weights. Interestingly, such dynamical
phenomena has been reported in the behavioral literature when addressing the
cognitive processes of working memory (Schutte, Spencer, & Schöner, 2003).
Nevertheless, this drifting is still a problematic issue, which needs be resolved.
Biologically plausible solutions to this problem of learning an uniform mapping
of sensory receptors to a neural representation have nevertheless been proposed
by Compte et al. (2000) and Stringer et al. (2002). The developed methods
mainly consist either of modifying the recurrent connectivity by an appropriate
learning rule, or by upgrading the basic model of the artificial neuron with an
adaptation mechanism.

Integration of Multiple Cues

Until now, only unimodal external inputs were considered. It is however in-
teresting to address the case of several distinct inputs. Indeed, neurophysiolog-
ical studies have reported that bimodal activity profiles can be observed within
populations of neurons (Amirikian & Georgopoulos, 2000; Cisek & Kalaska,
2005). This evidence suggests that a neural ensemble may process simultane-
ously different inputs such as those arising from different modalities or multiple
sensory cues (Pouget, Deneve, & Duhamel, 2002; Cisek & Kalaska, 2005).
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Figure 3.9: Fusion of two distinct input signals located at various distances in the
neural space. a) A typical response of a continuous attractor network to the inputs
pattern shown in b). As can be noticed, when the two inputs get sufficiently close, the
neural response indicates that the network can not discriminate them anymore. The
inputs are fused. c) A neural field can also estimate the signal averaging those conveyed
by two inputs. This estimation is performed by a relaxation process where the inputs
are first presented to the network and then removed. The final self-sustaining activity
profile represents their average, or, as suggested by Pouget et al. (2003), corresponds
to an optimal bayesian estimation of the variable encoded by the two signals, given
that they do represent the same but noisy information. This mechanism is however
valid only for sufficiently close inputs.

Representing Multiple Cues: Separation and Fusion

In order to represent distinct external inputs within a neural field, Equ.
(3.10) has to be rewritten so that several bell-shaped inputs corresponding to
different variables �s1, . . . , �sn ∈ Γ can be represented. It gives

x(�r, t) =
n∑

i=1

βi(t)
[
G(�si, �r, σ) − δ

]
(3.12)

where n denotes the number of distinct inputs. Because of the gaussian-like dis-
tributed encoding of a single variable, the distance in the neural space Γ between
two of them as well as the breadth σ of their representation, play an important
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role regarding how these inputs are integrated in the network. Figure 3.9b
first shows that when two inputs, equivalent in strength, get sufficiently close,
their respective representation starts to overlap and may even fuse (Schöner,
2002). In addition, when these inputs are projected into the neural field, the
recurrent interactions, which tend to find the internal attractor matching best
the network’s inputs, may even merge the inputs for larger distances (See Fig.
3.9a). Indeed, the closeness between two inputs depends on the breath of their
respective representation as well as that of the interaction weights. For a given
distance in the neural space, when the breadth of the input representation gets
larger, the neural field dynamics considers them as getting closer. Therefore, the
number of inputs which can simultaneously be presented to a neural field, while
being represented distinctively, clearly depends on the breadth of the inputs.

Furthermore, when two close inputs are fed to the network and then removed,
the neural fields’ relaxation dynamics tend to average the spatial location of
these inputs. This effect, illustrated in Figure 3.9c, can also be applied to
non-identical inputs having a different profiles in breath and amplitude. Under
certain conditions, the activity profile of the relaxed network can be seen as an
optimal bayesian estimator of a variable given different probability distributions
provided by each external inputs (Pouget et al., 2003).

Competition, Selection and Decision

As already well described in the literature (Amari, 1977; Salinas & Ab-
bott, 1996; Erlhagen & Schöner, 2002; Erlhagen & Bicho, 2006), given suffi-
ciently strong gaussian-shaped recurrent interactions, distinct inputs may com-
pete within the neural surface of the network. This competition usually results
in a selection process where only one input wins against the others for being
represented on the active surface of the neural field. This property may be seen
as a form of decisional process implemented neurally (Salinas & Abbott, 1996;
Erlhagen & Schöner, 2002). Figure 3.10a illustrates the dynamics of a neural
field in which two distant inputs compete for being selected. This example shows
the unstability of the network when two symmetric inputs are applied. Indeed,
a small amount of noise added to the membrane potential of the neurons can
break this symmetry, hence letting the network choose randomly one of the two
inputs.

In general, this form of selection process is assumed to be successful or
completed when the activity of either the whole network, or the neural region
surrounding the winning bump exceeds a given threshold E0. This quantity is
defined here as the energy E(t) of the network response Formally, the selection
is completed when

E(t) =
˛

Γ

f(u(�r, t)) d�r > E0 global network activity (3.13)

E(t) =
˛

Γ

f(u(�r, t))�r · �s d�r > E0 local network activity (3.14)
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In the second case, �s ∈ Γ denotes the location of the winning input.

Use of Prior Information for Biasing Selection

A random selection process may be disadvantageous in many behavioral
conditions. Animals normally take advantage of prior information in order to
bias and accelerate their decisions. Commonly applied methods for biasing
the selection process consist of either increasing the strength of the input to
be chosen, or pre-activating the neural region, i.e., the variable instance in Γ,
having the highest probability to be selected. This pre-activation is done by
applying a sub-threshold input at that precise location. Figures 3.10b to d
show how this biasing method may accelerate the selection process toward the
pre-cued external input.

Neural correlates of this computational mechanism where potential choices
pre-activate the ensemble of neurons preferentially tuned to these choices have
been recently reported (Cisek & Kalaska, 2005). The use of multi-electrode
recoding techniques allowed to monitor simultaneously an important number of
neurons simultaneously in the premotor and motor cortex, while a monkey was
performing a delay-reaching task. As illustrated in Figure 3.10e, by sorting the
neurons according to their preferred direction of movement, Cisek and Kalaska
(2005) were able to illustrate the spatiotemporal neural activation patterns in
a way similar to that used in the neural field literature. In addition, a model
composed of continuous attractor neural networks neural fields has been shown
to be capable of reproducing such activation patterns (Cisek, 2006).

Effect of the Representation Metric

The importance of the metric of the neural representation is now considered,
especially in the case of a competition between two different inputs. When two
competing inputs encoding respectively two variables �s1 and �s2 ∈ Γ, their dis-
tance in the neural space4 is a fundamental parameter influencing the time
needed for the selection (Erlhagen & Schöner, 2002). As shown in Figures 3.11a
and b, during the decisional process, the time course of the peak of the pop-
ulation activity profile highly depends on the distance between the competing
inputs. It rises faster for close inputs and slows down according to the distance
between these inputs. As already mentioned above, another aspect of the in-
put signals also influences the speed of the selection, namely their amplitude
or strength. Indeed, in order to be sure that a given input will be chosen by
the network, it has to be the strongest. As could be easily deduced, the larger
is the strength difference between the competing inputs, the faster is the selec-
tion. Therefore, both the distance and the difference in amplitude are important
factors. Figure 3.11c illustrates how the time course of the selection process is
influenced by these two factors, i.e., the distance metric and the amplitude of the

4Recall that the distance metric is primarily defined by the breadth of the interaction
kernel, as well as the breadth of the input representations.

97



u(r,t) 

r

0

time

b)

s1

s2

u(r,t) 

r

0

time

c)

s1

s2

d)

u(s2 ,t) 
u(s1 ,t) 

u(s2 ,t) 
u(s1 ,t) 

0
time

}Correct pre-cueing

}Wrong pre-cueing

u(r,t) 

r

0

time

a)

s1

s2

f (
u 

   
  )

(r
,t)

 

r

0

time

0

r

Experimental data Simulations

PMdr

PMdc

M1

normalized
firing rate

e)

x(r,t) ≠ 0 

h(t) > 0 

Pre-activation of the neural region encoding for s1

Input trigerring the decision

Go signal Go signal

Presentation of the targets

Presentation of the choice cue

Presentation of the targets

Presentation of the choice cue

Figure 3.10: Selection of an input among two of them. a) Two symmetric inputs are
presented to the network. Since some white noise was introduced in the membrane
potential of the neurons, the symmetry is rapidly broken, which results in a random
selection. At the end of the trial, the inputs are removed and the signal conveyed by
the winning input is sustained. b) The same symmetric input signals are also fed to
the network, but a bias was introduced in order to facilitate the selection of the one
representing the variable �s1. This bias takes the form of a pre-activation of the neural
region corresponding to that variable. c) In this example, the external signals are
asymmetrically balanced, so that the input representing �s2 is selected by the neural
field. The final asymmetry in amplitude combining both the external inputs and the
pre-activation is equivalent to that observed in a). d) This plot summarizes the se-
lection process observed in b) and c). The time course of the membrane potential of
the neurons respectively tuned to the value represented by the input variables �s1 and
�s2 is shown. As can be noticed, a correct pre-activation of the further selected input
accelerates the network response. e) (Left) Neural activity recorded in three motor
brain areas of a monkey during a two-target choice task. On top, the stimuli viewed
by the monkeys are shown. The two circles drawn on the activity plots indicate the
location of the target stimuli in the neural space. (Right) Simulation results repro-
ducing the activity patterns of the experimental data. As can be seen, experimental
and simulation data are fairly equivalent (Adapted from Cisek (2006)).
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Figure 3.11: Effects of the metric of the internal neural representation on the selection
process. a) Several examples of pre-activation patterns corresponding to different
distances between two symmetric inputs are shown. b) According to this distance,
the presentation of two asymmetrically balanced inputs produces distinct increases of
the activity of the most active neuron which corresponds to the peak of the winning
region. The more distant are the inputs, the longer is the network response. c) An
illustration of the combined effect of the distance metric and the relative amplitude
between both inputs on the network response time is shown. The amplitude of the
pre-activation pattern may be seen as a probability of selection. The more distant
and asymmetric are the input signals, the larger is the difference in response time
between the correctly and the incorrectly pre-cued network. (Adapted from Erlhagen
and Schöner (2002))

signals, the latter of which could also be understood as a probability measure.

Gain Modulation

The next property of neural fields that is considered here is that the infor-
mation they convey can be gain modulated. Gain modulation is a change in the
response amplitude of a neuron that is independent of its preferential selectiv-
ity, sometimes also referred to its receptive field (Salinas & Thier, 2000). Fun-
damentally, when considering distributed neural representations such as those
implemented in neural fields, the modulation of the overall activity of the net-
work corresponds to a multiplicative interactions between two separate sources
of inputs. The networks endowed with such a property were then designated as
gain fields. As will be described later, gain modulation has been suggested to
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Figure 3.12: Gain modulation of the information conveyed by the neural field is pro-
duced by varying the background input h(t). This effect can be produced by a network
having a) a mexican-hat-like or b) gaussian-like recurrent synaptic interactions. (Fig-
ure a) is adapted from Salinas and Abbott (1996))

be a mechanism by which the brain may combine or integrate information from
different sensory, motor, and cognitive modalities in a non-linear way (Salinas
& Thier, 2000; Pouget et al., 2002).

In continuous attractor neural network, gain modulation has been shown to
be implemented by changing the background homogeneous input h(t) (Salinas
& Abbott, 1996). As a consequence, when the background input is increased,
the effect of the recurrent interaction kernel on the network is amplified almost
proportionally, hence modulating the information currently represented in the
network. Another interesting property following from this mechanism, is that
the network may be switched off by decreasing this input to a very low level,
corresponding to a strong global inhibition of the network (Salinas, 2003a).
Some illustrations of the activity profile of neural fields which homogeneous
input was varied are given in Figure 3.12.

Sensorimotor Transformations

According to several theoretical considerations, gain fields have been sug-
gested to be ideally configured to facilitate certain kinds of computations such
as coordinate transformations (Salinas & Thier, 2000; Pouget & Snyder, 2000)
and the processing of invariant representations (Salinas & Abbott, 1997; Den-
eve & Pouget, 2003). Indeed, as reported by neurophysiological studies, gain
fields seems to be implicated in eye and reaching movements (Bruneo, Jarvis,
Batista, & Andersen, 2002; Scherberger & Andresen, 2003), spatial perception
(Avilllac et al., 2005), attention (Connor, Preddie, Gallant, & VanEssen, 1997),
and object recognition (Ashbridge et al., 2000).

The principle mechanism of transformation across frame of reference can be
described as follow. In Figure 3.13b, a target reaching example is considered.
In order to be able to reach the target, its location x in eye-centered coordinates
has to be transferred sequentially into a head-, body-, shoulder- until a hand-
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Figure 3.13: Sensorimotor transformations are suggested to be performed through gain
fields. a) The gain field, composed of neurons arranged on a two-dimensional torus is
capable to perform the coordinate transformation illustrated in b). A target is located
at an angle x in eye-centered coordinates and the eyes are looking at an angle y in
head-centered coordinates. In order to compute the target location x + y in a head-
centered frame of reference, the network combine multiplicatively the activity profile
of the two input populations representing respectively x and y. From such non-linear
and distributed combination of input variables, almost any transformations such as
their sum can be computed. (Adapted from Pouget et al. (2002); Salinas and Thier
(2000))

centered frame of reference so that the necessary information for planning a
reach becomes available. By considering only the first step here, the use of the
information related to the eye position y in their orbit, the location x+ y of the
target in a head-centered coordinate system can be computed. In this example,
a neural field, which internal space Γ corresponds to a two-dimensional torus,
receives projections from the neural populations encoding both variables x and
y along each of its dimension, respectively. Despite of the additive nature of the
synaptic projections, the recurrent interactions are capable to produce a non-
linear combination of these inputs. Consequently, the sensitivity of each neuron
of the gain field corresponds more or less to a radial basis function centered on
the a specific value in a space combining those in which x and y are encoded. As
illustrated in Figure 3.13a, a third neural population, by appropriate projections
from the central field, is finally encoding the target in head-centered coordinates,
i.e., x + y. The fundamental idea behind the gain field approach, is that, out
of a non-linear combination of input variables represented by means of basis
functions, any transformation can be calculated, its precision depending on the
breadth of the tuning curves as well as the number of neurons in each population
(Salinas & Abbott, 1995; Baraduc & Guigon, 2002; Pouget et al., 2002).
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Traveling Waves and Motion Integration

Self-sustained patterns of excitation have been described as a means to mem-
orize the information conveyed by the last seen input. However, the question
as to how should a neural field behave in the case of a moving input may
arise. A theoretical answer has been proposed following from the observation of
traveling waves of excitation within neural ensembles which may be either spon-
taneous (Chagnac-Amitai & Connors, 1989), or resulting from epileptic seizure
(Wadman & Gutnick, 1993).

Traveling waves

Neural field models of traveling waves have been developed in the past
decades (Amari, 1977; Zhang, 1996; Ben-Yishai, Hansel, & Sompolinsky, 1997;
Xie et al., 2002; Erlhagen, 2003). Two major approaches have been proposed
to reproduce this phenomenon. While one of them introduces an additional in-
hibitory layer on top of the classical continuous attractor model (Amari, 1977;
Ben-Yishai et al., 1997; Erlhagen & Schöner, 2002), the other considers asym-
metries in the recurrent interaction kernel (Zhang, 1996; Xie et al., 2002).

In the first approach, by coupling two layers, the first-order differential equa-
tions driving the dynamics of each layer can be combined which results in a dif-
ferential equation of the second order. Consequently, supplementary behaviors
can emerge from the network dynamics such as oscillations. In addition, when
appropriately tuned, this coupled neural field may damp these oscillations, and
hence, the network activity may stabilize. In a perfectly symmetric and noise-
free world, the resulting stable activity bump would be stationary. However,
this particular case is, dynamically speaking, unstable. When the symmetry is
broken, a traveling activity packet develops. Along the direction in which the
bump moves, the tail of the bump mostly gets inhibited by the previous activa-
tion of that precise region, while its front side gets more easily excited since no
activity was present before at this location. Two examples of reported shapes
of traveling wave in such a neural medium are shown in Figures 3.14a-c.

In the second approach, an asymmetry in the recurrent interaction kernel has
been proposed. Zhang (1996) demonstrated that if the additional asymmetric
component of the synaptic wights corresponds to the directional derivative of the
original part along a direction in the neural space, a symmetric-shaped travel-
ing activity bump emerges from the network. As such, the network’s dynamics,
originally producing a continuum of marginally stable attractors, exhibits now a
periodic attractor dynamics or a limit cycle (See Figure 3.14e). Formally, by re-
naming the original recurrent weights WR with WR

0 , the recurrent connectivity
producing a traveling wave can be written as

WR(�r, �r ′) = WR
0 (�r, �r ′) − λ∇WR

0 (�r, �r ′) · �d (3.15)
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Figure 3.14: Traveling waves can be generated on the surface of neural fields according
to two computational methods. a)-c) By adding a supplementary layer on top of the
neural field, where each neuron of that layer inhibits preferentially the neurons of
the original layer sharing a similar preferential tuning, traveling wave may develop
on the field. As can be noticed, along the direction of motion, the tail of the bump
is more inhibited than its head, which allows the activity packet to move. (Adapted
from Amari (1977); Erlhagen (2003)). d) The second method consists of adding an
asymmetric component to the recurrent interaction kernel. e) This modification results
in a change of the network intrinsic dynamics. As illustrated by the state spaces, the
original marginally stable attractors of the network (left) become unstable in the sense
that they now form a directed limit cycle. f) This simulation example shows the effect
of the asymmetric shape of the recurrent weights. From a homogeneous initial state,
the noise breaks this unstable state and an activity bump emerges. Because of the
biased connectivity, this bump moves in one direction at a given constant speed. g)
(Adapted from Zhang (1996)).
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Figure 3.15: Network sensitivity to moving inputs: a) (Top) Results of an experi-
ment were a neuron of the visual cortex was recorded while a moving visual stimulus
was presented at different speeds. This plots shows that this particular cell is preferen-
tially tuned to a given stimulus velocity (Adapted from Orban et al. (1986)). (Bottom)
Simulation results where a moving input stimulus is presented to a neural field with an
asymmetric connectivity. The profile of the maximal activity of an arbitrary neuron
of the network shows that this model can faithfully reproduce the response pattern of
a real biological neuron. b) The spatiotemporal response of two neural fields prefer-
entially tuned to opposite directions to a input stimulus moving in the right direction
shows that when the input direction of motion is compatible with that of the network,
the field response is greater than in the opposite case. (Adapted from Mineiro and
Zipser (1998))

where ∇ corresponds to the differential operator and �d to the direction along
which the activity bump will move. λ > 0 is a scaling factor which has been
shown modulate the speed of the traveling wave (Zhang, 1996). This speed
will further also called the intrinsic velocity of the network. An illustration of
the ideal profile of the recurrent weights as well as a traveling activity bump
generated by such an interaction kernel are respectively shown in Figures 3.14d,
f and g.

Velocity Sensitivity

As shown in previous sections, a stationary input, which is fed into a neural
field, develops a stationary bump on its neural surface. However, when the
continuous attractor network is tuned to produce a traveling excitation pattern,
the effect of such a stationary input is modified. Indeed, instead of entering in
resonance with a marginally stable attractor, it now compete with the network’s
tendency to move the current bump of activation along its directed limit cycle.
As a consequence of this competition, the strength of the network response
to this input is reduced as compared to that observed in a standard neural
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field. Next, following from this observation, one could intuitively imagine that
an input moving in the same direction as the intrinsic velocity of the network
would produce a stronger response. As shown by Mineiro and Zipser (1998),
this directional selectivity effect can effectively be observed. Moreover, this
sensitivity is not only directional, but depends also on the intrinsic velocity of the
network. An input stimulus moving at a speed more or less equivalent to that of
the network appears to produce a greater activation than when moving at other
velocities. Interestingly, biological neurons exhibiting such directional selective
responses were found in the visual cortex (Orban et al., 1986). Simulation results
reported by Mineiro and Zipser (1998) as well as the results of the mentioned
neural recordings are given in Figure 3.15.

Velocity Integration and Update of the Internal Representation

Self-sustained patterns of excitation have been described as a means to mem-
orize the information conveyed by the last seen input. However, sometimes, it
may be important for the brain to be capable of updating this represented infor-
mation by means of other input signals, different by nature. For instance, when
observing an object passing behind an occluder at a constant speed, one can
predict at which precise moment the object will reappear. In this example, an
internal representation of the object location must integrate its velocity through
time in order to keep that representation up to date.

In the rat hippocampal formation, it has been reported that a group of cells
fire according to the current heading direction of the animal (Taube & Bassett,
2003). Interestingly, these so-called head-direction cells have a firing pattern
which can be modeled by means of neural fields coding for a direction in space.
Moreover, these neurons also have the characteristic that their activation can
be kept updated based on self-motion cues even in complete darkness. Conse-
quently, the animal can hence always be aware of which allocentric direction
it is looking at. Technically, it is believed that an angular head velocity signal
shifts the localized activity pattern by integration (in the mathematical sense)
(Zhang, 1996; Redish, 1999). As such this integration mechanism has further
been proposed to be also involved in predictive processes such as that described
above (Erlhagen, 2003). Indeed, several groups of neurons widespread in var-
ious areas of the cortex exhibits predictive responses associated with motion
perception (Unema & Goldberg, 1997; Eskandar & Assad, 1999; Umilta et al.,
2001; Nakamura & Colby, 2002; Jellema et al., 2004)

Neural implementations derived from the asymmetric recurrent synaptic con-
nectivity producing traveling waves have been proposed by several computa-
tional studies (Redish, Elga, & Touretzky, 1996; Zhang, 1996; Goodridge &
Touretzky, 2000; Stringer et al., 2002; Xie et al., 2002). First, a category of
models assume that the recurrent asymmetry can be modulated by a third-part
neuron (Redish et al., 1996; Zhang, 1996; Stringer et al., 2002). As mentioned
earlier, the amplitude λ of the asymmetry given in Equ. (3.15) directly controls
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Figure 3.16: Neural mechanism of velocity integration. a) The structure of a double-
ring network as that proposed by Xie et al. (2002) is shown. The two sub-networks
are respectively tuned to drive the activity bump in an opposite direction. Their
reciprocal strong coupling forces them to represent the same information. By balancing
asymmetrically their respective global excitation level, a velocity-controlled traveling
wave is produced. b) In this simulation, the global activation of both sub-networks is
initially balanced. Then, the leftward population becomes more excited and hence, a
traveling motion of the bump is observed in that direction. This tendency is further
reversed and finally, the balance of excitation is restored.

the intrinsic speed of the network, and hence the amount of velocity integration.
From this, a third-part neuron representing the velocity signal may modulate
the network integration level though this variable. However, the use of such
so-called sigma-pi neurons has often be considered as controversial in terms of
biological plausibility. Indeed, keeping the additive property of neural integra-
tion of synaptic inputs has been suggested to be fundamental to remain in line
with a biological account of the neural response (Xie et al., 2002). Therefore,
neural field models with additional layers and strictly additive neurons were
suggested in order to reflect more accurately the neural processes occurring in
the brain (Goodridge & Touretzky, 2000; Xie et al., 2002). The fundamental
principle mechanism developed by Xie et al. (2002) consists of two neural pop-
ulations respectively endowed with an intrinsic tendency to move an activity
bump in opposite directions. Next, a competitive push-pull interaction dynam-
ics between these two layers is introduced through a tight coupling between
them. Indeed, by balancing the respective amount of excitation fed to these
oppositely tuned populations, the one which is the most excited tend to drive
the activity packet in its associated direction. An illustration of the structure
of the two-layer model as well as simulation results of velocity integration are
given in Figure 3.16.

This ends the present section addressing some of the numerous computa-
tional properties of neural fields that make this approach an ideal framework
for analyzing the cognitive processes present in the brain. Until now, continuous
attractor neural networks were mostly considered alone, although they do receive
some external inputs. However, in order to model higher brain functions such
as those with which the present thesis is concerned, networks of such networks
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have to be developed. Indeed, the cortex is composed of many interconnected
regions processing different types of information as well as being involved in
different cognitive functionalities. Similarly to the gain in computational power
provided by an appropriate combination of neurons in large networks, more
complex behaviors are expected to emerge from networks composed of neural
fields connected together.

3.2.3 Modeling Cortical Pathways: Network of

Networks

In order to represent the brain neural pathways involved in various cognitive
functions, networks of neural fields have been proposed, where each subnetwork
is often associated with a specific brain region. Recent works have developed
large networks in order to model several cognitive abilities such as visual pro-
cessing (Itti & Koch, 2001), selection of target for movement execution (Cisek,
2006), sensorimotor learning (Andry et al., 2004; Meńard & Frezza-Buet, 2005),
sensorimotor transformations (Pouget et al., 2003), invariant representations
(Salinas & Abbott, 1997; Deneve & Pouget, 2003), spatial navigation (Redish
et al., 1996), joint-action task involving several agents (Erlhagen & Bicho, 2006),
and goal-directed imitation (Erlhagen, Mukovsky, & Bicho, 2006).

In this thesis, the same approach will be followed when the neural processes
of imitation will be addressed. Since several neural fields will be interconnected
within large neural networks, the notation as well as the fundamental mecha-
nisms for linking neural neural fields together are described in the following. In
order to identify a neural network representing a brain region or a sub-ensemble
of neurons within a region, an index i, corresponding to the name of the net-
work, is added to its internal variables. For example, the membrane potential
of a neuron belonging to a population i, preferentially tuned to a direction �r at
time t will be written as ui(�r, t).

Next, in addition to the direct external inputs that a neural field may receive
(see Equ. (3.10)), the network can also be subjected to synaptic projections
arising from other populations. The projections between two neural fields can
basically be of two types. First, topology preserving projections ensure that a
localized peak of activity in the source population also produces a localized input
in the target population. Secondly, homogeneous projections uniformly mod-
ulate the target population proportionally to the global activity of the source
field.

Topology preserving projections are mediated by synaptic weights W ji from
a population j to a population i. Since the preferential sensitivity of each neuron
is important in this case, these synaptic projections affect the input xi(�r, t) of
the network, defined in the equation describing the field dynamics (Equ. (3.9)).
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An additional term is thus added to Equ. (3.10) which gives

xi(�r, t) =
∑

j∈Ni

βi
j(t)
[
G(�s i

j , �r, σ) − δ
]

+
∑

j∈Mi

˛
Γ

W ji(�r ′, �r) f
(
uj(�r ′, t)

)
d�r ′ (3.16)

where M i and N i correspond, respectively, to the ensemble of external inputs
and the ensemble of the population projecting to network i. βi

j is the strength
of the representation of the sensory variable �s i

j (t). The synaptic projections
W ji are usually defined similarly to the recurrent weights given in Equ. (3.8),
but with different parameters5. In contrast to the topology preserving projec-
tions, homogeneous projections consist of an uniform modulation of the target
population that could either be excitatory or inhibitory. By their homogeneous
nature, they affect the background input hi(t) of neural field i such that

hi(t) = hi
0(t) +

∑
j∈Ki

W ji

˛
Γ

f(uj(�r, t)) d�r (3.17)

where Ki corresponds to the ensemble of population projecting homogeneously
to the network i. Similarly to the first term of the external inputs given in
Equ. (3.16), hi

0(t) is the background modulation being directly applied to the
network. In this case W ji is constant and belongs to R.

5If the weights W ji need to be defined differently, their generating equation will be explic-
itly mentioned in the text when appropriate.
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Summary

This chapter reviewed the modeling approach adopted in this thesis. The
artificial neural networks employed here, known as neural fields, possess a range
of computational abilities for processing information, almost all of which have
strong neurophysiological correlates. They include the ability to represent in-
formation, memorize it, reduce noise, select an input between several competing
inputs, perform sensorimotor transformations and achieve motion integration.
In addition, interconnecting neural fields allows for the development of large
neural networks that may, to a certain extent, model the connectivity patterns
of the brain areas involved in imitation. It is well accepted that the processes un-
derlying imitation deal with sensorimotor transformations, sensory predictions,
decision-making and memory: all computations that neural fields are capable
of. Models based on neural fields, therefore, might be expected to successfully
reproduce the behavioral expressions of imitation in humans and monkeys.

The following chapter begins to describe the modeling work accomplished
in this thesis. An investigation of the cortical pathways involved in automatic
imitation is presented. Two plausible neural field architectures accurately repro-
duce the results of a behavioral experiment. A novel experimental paradigm for
differentiating between these two models is proposed. Performing such an ex-
periment would enable identification of the most probable cortical information
pathways involved in such automatic imitative behaviors.
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Chapter 4

Brain Pathways of

Imitation and the

Ideomotor Principle

The study presented in this chapter was significantly
adapted from the work published in:

Sauser, E. L. and Billard, A. G.. Parallel and distributed neural models of
the ideomotor principle: An investigation of imitative cortical pathways.
Neural Networks. 19(3):285-298, 2006.

This chapter begins to describe the modeling work undertaken in this thesis.
It presents an investigation of the neural mechanisms and cortical path-

ways responsible for automatic imitative behaviors, especially those involved
in the behavioral expression of the principle of ideomotor compatibility. This
work raises a question formulated with respect to current knowledge of human
neurophysiology, one suggested by neural evidence of the existence of shared
representations between one’s own movements and those performed by others:
is there really a direct sensorimotor route responsible for triggering imitative
behaviors, or does the information encoded within these shared representations
influence only the higher cognitive centers involved in the selection of motor
responses? In order to investigate this issue, two neural models are developed,
each following one of these two hypotheses. Both models are capable of replicat-
ing the results of the behavioral study described in the next section. In order to
test which of the two models best describes human behavior, a novel behavioral
experiment is proposed.

4.1 Related Experimental Study

Brass et al. (2000) conducted a behavioral study which was based on a
stimulus-response (SR) experimental paradigm. It was used in order to verify
two hypotheses of the ideomotor theory. These two hypotheses are based on
the neural correlate that the human brain appears to possess highly specialized
neural circuits devoted to the recognition of movements performed by others
and that these circuits are likely to be shared by the motor preparation circuits
(Iacoboni et al., 1999; Decety & Sommerville, 2003). The first of the hypotheses
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states that if a subject is requested to respond to a movement of a demonstrator,
then (s)he would experience a motor facilitation resulting in faster reaction
times as compared to the case where the subject is asked to respond to an
more abstract spatial cue. The second hypotheses states that the facilitatory
effect would be greater if the movements of the demonstrator and subject are
similar (ideomotor compatible) than if they are of a different type (ideomotor
incompatible).

Their experimental setup is comprised of three independent binary variables,
which leads to eight conditions plus four baseline conditions. The experimental
stimuli consisted of a combination of a finger-lifting movement (either index or
middle finger) and of a spatial cue consisting of a cross painted on the corre-
sponding or opposite fingernail (see Fig. 4.1a). The subjects reaction times
(RTs) were measured while they were asked to respond to the various stimuli
by moving the finger that was the closest to either cue (e.g. by moving their
index finger in response to a demonstration of a movement of the index fin-
ger or to the presentation of a cross on the demonstrator’s index fingernail).
These instructions determined the first experimental variable, i.e., the relevant
stimulus dimension. Furthermore, an interference paradigm was used in order
to examine the effect of the presentation of congruent or incongruent1 stimuli
against a baseline condition in which only the relevant stimulus was presented
to the subjects. Finally the experiment was varied in order to examine the effect
of ideomotor similarity between observed and executed movements. In one case
the subjects were asked to lift their finger (ideomotor compatible condition),
and in the other case, they were asked to produce a finger-tapping movement
(ideomotor incompatible condition).

The results of this experiment, shown in Figure 4.1b, were in agreement
with the hypotheses. Indeed, responses to finger movements were faster than
responses to spatial cues, and ideomotor compatible pairs of observed-executed
movements generally produced better RTs. Moreover, typical facilitatory and
interference effects were observed between congruent and incongruent condi-
tions respectively. Next, two neural models which account for these results are
presented.

1Congruent condition: a left (right) finger movement with a cross on the left (right) fin-
gernail. Incongruent condition: a left (right) finger movement with a cross on the right (left)
fingernail.
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Figure 4.1: a) Examples of congruent and incongruent stimuli used by Brass et al.
(2000) in their experiment. b) The reaction times observed in the original experiment
are redrawn with a small modification. As the ideomotor variable was tested among
two distinct groups of subjects, the reaction times were shifted in order to make the
baseline condition in the spatial cue task coincide in both experiments. Indeed, this
is the only case in which the experimental conditions are identical.

4.2 Neural Models

The modeling approach of this work is primarily base on the well-accepted
hypothesis that the brain uses parallel pathways to process information. This
parallel and distributed processing principle has been successfully applied in
explaining a variety of effects observed during stimulus-response experiments as
well as a wide range of human behaviors (Hasbroucq & Guiard, 1991; Kornblum,
1994; Zhang, Zhang, & Kornblum, 1999; Erlhagen & Schöner, 2002). These
models usually assume a feed-forward layered network organization, where each
layer corresponds to a specific sensorimotor processing stage, such as sensory
perception, multisensory integration or motor preparation. Generally, several
streams of information coexist and are then combined together within further
layers until an output response is provided by the last part of the model.

In this chapter, a similar type of neural architecture is developed in order
to account for the visuo-motor flow at the basis of the imitation task described
above. In particular, this work is interested in determining whether automatic
imitative behaviors, as described at length in Section 2.2.1, are effectively me-
diated by a direct route between action observation and motor execution, or
whether they are mandatorily gated by the higher-cognitive processes of motor
selection as reported in usual sensorimotor stimulus-response tasks. Therefore,
two models are developed, and each of them follows one of the two hypothe-
ses. As will be described in the next section, the processing components of the
two models are identical, but the connectivity among them is different in order
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to account for either a separate or a unique route for imitative behaviors and
stimulus-response mapping. Finally, the implementation of these models follows
the dynamic neural field approach presented in Chapter 3. Consequently, rather
than describing again the equations ruling this type of network, references to
them will be provided along the description of the architecture of the models.

4.2.1 Architecture of the Models

As shown in Figure 4.2, the two neural models can be split into three major
parts. The visual perception, the decisional and the motor preparatory layers
have for respective tasks to process visual information, to determine the right
response to external stimuli, and to prepare and trigger motor execution. Each
model is basically a network of interconnected neural fields, where the processing
is mainly feed-forward. The external inputs thus drive the network activity
along one direction of propagation. These models are input-driven. Next, The
processing of the task instructions is not explicitly addressed here. Frontal
cortices are simply assumed to drive the models by modulation of the neural
activity of their components. In the next sections, a technical description of the
architecture of the two models is first provided, followed by their relationships
to real cortical networks.

Visual Perception

First of all, as described in Sections 2.3.2 and 2.3.3, movement observation
is suggested to recruit two separate cortical pathways. The route primarily
involved in decision-making flows ventrally, from the temporal cortex to the
prefrontal lobe. In contrast, the other, which is more concerned with the control
of movements in sensorimotor terms, passes dorsally along the parietal and
frontal cortices. Therefore, the description of the visual inputs to these two
pathways has been separated.

Visual Perception for Decision-Making: Neural Encoding

In this modeling study, visual information is assumed to have already been
processed by highly specialized circuits and to be represented in a manner rel-
evant for the task. According to the characteristics of the stimuli used in this
experiment, two major types of visual inputs are considered. They correspond
to the abstract or spatial cue, i.e., the cross on a fingernail, and the movement
cue. These two components of the stimuli are encoded in two distinct neural
fields which represent their spatial location in the visual field. The parameter
space sin which this information is encoded is given by �r ∈ ΓN=1 (See Equ.
(3.5)). Here, since Γ is unidimensional, the ensemble of preferred directions �r

of this network can be associated to a periodic variable θ ∈ [−π, π[ such that
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Figure 4.2: Schematic of the two architectures proposed to model the behavioral
effect related to the ideomotor principle. On top, the single-route architecture assumes
that all the processed stimuli interact within the same integration layer. At the bottom,
two separate pathways are involved in the computation. The cue integration pathway
accounts for the response selection, whereas the ideomotor pathway influences the
motor selection mechanism by means of a direct connectivity.
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�r = (cos θ, sin θ), where θ represents the neural space where stimuli are local-
ized. Importantly, θ does not necessarily correspond to an angular position.
Further, the dynamics of the neural fields is governed by Equ. (3.9). In Equ.
(3.10) which describes the profile of external inputs, the location of one input
is denoted by �s i and its amplitude by βi, where i indicates the network which
receives that input (See Section 3.2.3). Finally, note that �s i is replaced here by
a variable ϕ in a way similar to how the preferred direction �r were exchanged
with θ.

Effect of Task Instructions

Since the task instructions have to favor responses to one of the two types
of cues, the neural representation of the relevant stimulus should be positively
enhanced. Technically, a top-down modulatory input hT is fed into the back-
ground homogeneous input of each neural population such that

hi(t) = δ(i, j)hT and δ(i, j) =

{
1 i = j

0 i �= j
(4.1)

where i, j denote either the network corresponding to the spatial or movement
cue. In particular, j indicates the neural field encoding the task-relevant stim-
ulus (See Figure 4.2).

Perceptual Biases

Studies in experimental psychology reported several human behavioral char-
acteristics indicating the existence of perceptual biases which affect the process-
ing of visual inputs. Two of them are considered here. First, it has been shown
that moving stimuli receive more attention that static ones, which usually re-
sult in faster responses to the former class of stimuli (Franconeri & Simons,
2005). In this study, a bias toward movement cues has thus to be introduced,
i.e., the amplitude β of the external input corresponding to the movement cue
is artificially set to a higher value than that of the abstract or spatial cue.

Secondly, a phenomenon usually referred as the Hick’s law, which basically
states that the more information is perceived, the longer is the reaction time2,
may be at play in this experiment (Hick, 1952). Indeed, the baseline condition
of the task involves only one stimulus component, whereas the other conditions
require two of them. A modeling study by Erlhagen and Schöner (2002) already
showed how the Hick’s law could be reproduced from the competitive inter-
actions between several external inputs simultaneously fed into a neural field.
Here, the same technique is considered but by means of reciprocal inhibitory
connections between the neural representations of both cues. This inhibition
is applied in the models using homogeneous projections as described in Equ.

2More precisely, this law describes that when the brain has to process N different stimuli
simultaneously, the reaction time approximatively increases proportionally with the binary
logarithm of N .
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Figure 4.3: Illustration of the mechanism influencing the integration time when more
than one type of stimulus is applied to the network. Each plot shows the evolution
of the activity of the neurons with maximal activation which represent either the
movement or the spatial cue. The light dotted line indicates an arbitrary threshold
level, and the light filled line gives the time at which the maximal activation reaches
that threshold. As can be seen, when competitive interactions are introduced between
the stimulus representations, the integration time is longer.

(3.17). As illustrated in Figure 4.3, when a stimulus input is fed to each cue
representation, their respective amplitude increases more slowly as compared to
during the baseline condition, where only a single input is applied.

The Sensorimotor Route of Movement Representation

As mentioned above, there is a second processing route in which the obser-
vation of movements has an influence. Because this route is more concerned
with the representation of movements in sensorimotor terms, the neural encod-
ing along this pathway should be similar to that used for the direct control of
movements. Therefore, along this processing pathway, to each finger is associ-
ated a neural population coding for its movement direction (Georgopoulos et
al., 1988). According to the experimental task, fingers could move either up or
down. The external input of these neural fields thus indicates a movement in
one of the two opposite directions (See Appendix B.1 for the exact values used
in this model). Importantly, these internal representations of the movements of
others are assumed to be encoded in motor coordinates, i.e., within the same
frame of reference as self-planed movements.

Motor Preparation

As shown in Figure 4.2, the motor preparation layer consists of three areas,
which code respectively for the motor plan of each finger, for the motor com-
mands to be executed, and for the shared representation between movement
observation and motor execution designated as the ideomotor integration area.
By definition, the ideomotor region is where information related to both move-
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ment observation and movement preparation overlaps, and it is thus the area
responsible for ideomotor effects to occur (Greenwald, 1970; Brass et al., 2000).
Possible movements, represented in all the regions of the motor preparation
layer are thereby represented in the same way as observed movements, i.e., two
distinct neural fields encode the direction of movements of the index finger and
the middle one.

Considering now the ideomotor region and its connectivity patternrs, it re-
ceives projections from the representation of observed movements as well as that
of planned ones by means of synaptic connections defined in Equ. (3.16). Be-
cause of its visuomotor property, this area will induce the ideomotor effect, i.e.,
high ideomotor compatibility happens when the demonstrator and the imitator
move the same finger in the same direction, whereas low ideomotor compatibility
is reached when demonstrator and imitator produce movements with different
fingers in the opposite direction.

Response Selection

The output of the models consists of a network which receives the possible
motor plans to be executed. As will be described in more details in the para-
graphs presenting the decisional layer, this area may either receive the original
motor plans directly, or the result of the visuomotor integration preformed in
the ideomotor region. Next, in order to trigger the correct motor response, the
motor selection area also waits for an execution signal coming from the deci-
sional layer. Since this final motor selection process has to trigger the move-
ment of one of the two fingers only, homogeneous inhibitory connections were
introduced across the networks representing the direction of movements of each
finger. A motor response is then executed as soon as the global activity of its
corresponding population, i.e., its energy E(t) as defined in Equ. (3.14), reaches
the threshold E0 such that

Ei(t) > E0 ⇒ The motor plan of network i is executed. (4.2)

where i denotes the motor selection network associated with either the left or
right finger. Finally, actual motor execution processes were not considered in
this work. Indeed, since the execution time of finger movements is assumed to
be constant under all conditions, modeling these processes or not is assumed to
result in no significant relative difference on the reaction times produced by the
models.

Decision and Response Selection

The principal task of the proposed models is to select a response according to
either the spatial cue or the movement cue. Basically, this computation is associ-
ated with the neural network located in the decisional layer of the models shown
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in Figure 4.2. This neural field receives projections from the representations of
spatial and movement cues. Because the strength of these representations are
asymmetrically balanced with respect to the task instructions, the cue integra-
tion network can thus always select the correct response. However, the time
required for performing the decision will depend on the congruency between the
inputs (See Figure 3.10 of Chapter 3 for an illustration of this mechanism).

Differing Processing Pathways between the Models

As can be seen in Figure 4.2, the difference between the two proposed models
consists primarily of a different connectivity to the cue integration network.
While the direct-matching model assumes direct projections from the ideomotor
region to the motor selection centers, the single-route model processes the second
stream mediating movement observation within the decisional layer. In this
second model, projections from the ideomotor area to the cue integration area
have to be introduced. Moreover, since the representation of both areas differs,
a transformation has to be defined in order to transfer the motor representation
of the former into the spatial representation of the latter. This is realized by
means of two additional localized inputs feeding the cue integration area, which
encodes the location of the two fingers. Their respective amplitude βj

i (t), where
i denotes the ideomotor representation of either the left or the right finger and j

the cue integration network, is set proportionally to the energy Ei(t) (See Equ.
(3.14)) of its corresponding network, i.e., βj

i (t) = γi Ei(t), where γi is a scaling
factor.

Stimulus-Response Mapping

Finally, as soon as the selection process ends, the decision which has been
made in stimulus space, has to be transformed into motor space. In this work,
although a plausible neural mechanism for performing such stimulus-response
associations has been proposed by Wilimzig and Schöner (2005), it was simply
assumed that this transformation is carried out by hard-wired connections from
the decisional process to the motor selection stage. In order to produce these
associations, the local energy Ei

j(t) of the network around the location of the
finger ϕj as defined in Equ. (3.14) is fed into the homogeneous input of the
motor selection network, i.e., hj(t) = W ij Ei

j(t), where i applies for the cue
integration network, and j for the neural field of the motor selection region
corresponding either to the left or right finger. W ij corresponds the strength of
the projections.

In addition, with respect to the task instructions, this connectivity may
be modified so that different stimulus-response associations can be obtained.
However, associations that are different from spatially compatible responses,
i.e. a left/right movement in response to a left/right stimulus, have been shown
by behavioral studies to produce longer reaction times (Hedge & Marsh, 1975;
Hasbroucq & Guiard, 1991; Proctor & Pick, 2003). Therefore, an artificial
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processing time Δ is introduced in the system such that the equation described
above becomes hj(t) = W ij Ei(t−Δ). When the mapping is natural, Δ = 0, but
otherwise, it is set according to behavioral data (See Proctor and Pick (2003)
and Appendix B.1).

Relationships of the Models with Cortical Pathways

The models presented above describe several cortical pathways which are
responsible for the behavioral expression of automatic imitative tendencies. The
correlates of each part of the models with neurophysiological data are given next.

As shown in Figure 4.2, the visual perception of the abstract and movement
cues is assumed to be first processed by early visual areas, i.e. V1 to V5 as
well as the medial temporal cortex (MT/MST) (Hubel & Wiesel, 1977; De Yoe
& Van Essen, 1988). Then, the cortical route differs for both cues. While
the identification of abstract cues may involve the inferotemporal cortex (IT)
(Booth & Rolls, 1998; Ashbridge et al., 2000), that of movement cues may
rather recruit the superior temporal sulcus (STS) (Perrett, Harries, Bevan, et
al., 1989; Oram & Perrett, 1996; Jellema et al., 2004). Importantly, these
areas are known to project high-level descriptions of the visual scene to the
prefrontal areas responsible for decision making, namely, the lateral prefrontal
cortex (LPFC) (Lauwereyns et al., 2000; Sakagami et al., 2006).

In parallel, the cortical pathway involved in the processing of observed move-
ments in sensorimotor terms is suggested to flow more dorsally along the parieto-
frontal network (Rizzolatti et al., 2002). The representation of observed move-
ments, processed in STS which is specifically activated by the sight of move-
ments of the body and limbs (Perrett, Harries, Mistlin, & Chitty, 1989; Jellema
et al., 2004), is then projected, through the posterior parietal cortex (PPC),
to the cortical network in charge of preparing and executing movements. This
network is known to be partly formed by the anterior medial frontal cortex
(AMFC), the supplementary motor area (SMA), and the premotor cortex (PM)
(Alexander & Crutcher, 1990; Rizzolatti & Luppino, 2001; Decety et al., 2002;
Brass et al., 2005). Importantly, the human cortical areas which exhibit both
motor preparatory and mirror activity, i.e, PM and SMA (Fogassi & Gallese,
2002; Rizzolatti et al., 2002), are here believed to correspond to the network
which is responsible for the manifestation of the ideomotor principle.

As rapidly mentioned above, LPFC is believed to integrate a high-level de-
scription of the environment in order to produce deliberate decisions in response
to visual stimuli (Watanabe, 1986; Sakagami et al., 2001). Interestingly, the role
of this region is not to produce motor command per se, but rather to produce
go or no-go signals for motor commands prepared within the motor cortices
(Lauwereyns et al., 2000; Sakagami et al., 2006). Importantly, this work ask
whether the decisional process within LPFC is influenced by imitative cues re-
layed by the dorsal processing route, or whether these cues only interfere at the

120



Single Route Model

Congruent Baseline Incongruent

Movement cue condition
Spatial cue condition

Non Ideomotor Ideomotor

280

300

320

340

360

380

Congruent Baseline Incongruent

RT [ms]

Direct-Matching Model

Congruent Baseline Incongruent Congruent Baseline Incongruent

280

300

320

340

360

380
RT [ms]

Figure 4.4: Simulation results of the two models under the same conditions as in
the experiment by Brass et al. (2000). The time scale on the y-axis is not shown as
the models do not simulate real cortical processing time. Both models are in good
agreement with behavioral data reported in Figure 4.1.

level of the motor selection in the ventral premotor cortex (PMv). As will be
presented in Section 4.3.2 a method to clarify this issue could be to perform
an experimental study which implies an increase of the computational load in
LPFC.

4.3 Results

4.3.1 Replication of the Related Experimental Study

The two models were simulated under the same conditions as those used by
Brass et al. (2000) in their behavioral experiments. The system parameters, i.e.,
the amplitude of the inputs, the recurrent profile of the neural fields as well as the
strength connectivity patterns of the networks, were initially tuned according to
the hypotheses of this work, which were presented in Section 4.2.1. Then, they
were fine-tuned using a gradient descent method in order to minimize the error
between the behavioral data and the simulation results. Moreover, since it is
beyond the scope of the present study to account for the precise time course of
neural processes, simulated RTs were also fitted to the original data using a first
order least squares error regression method. The thereby obtained simulation
parameters are summarized in Appendix B.1.

The measured reaction times performed by the models are shown in Figure
4.4. As can be seen, the two models are in good agreement with the original data
and hence exhibit a similar behavior. Indeed, despite their conceptually different
architectures, all the necessary components which determine the interactions
between the perceptual parts of the stimuli are identical. All the processing
stages are treated similarly and the differing connectivity only forces stimuli
interactions to be processed in different stages.

More details concerning the dynamics of the second network are illustrated
in Figure 4.5. Only the spatial cue task condition is shown, as it best repre-
sents the model’s interesting characteristics. Firstly, it can be seen in the cue
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neuron with maximal activity of each motor selection area is shown. The vertical bar
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integration layer that the selection process takes longer in the incongruent con-
dition than in the congruent condition. Indeed, the selection mechanism must
inhibit the incompatible movement cue. Similarly, ideomotor compatibility has
also an influence on RTs. In the congruent conditions, the slope of the mo-
tor selection activity profile is sharper in the ideomotor case as compared to the
non-ideomotor case. The selection process is thus faster in the former condition,
where the ideomotor region is facilitating the selection process. Conversely, in
the incongruent condition, the ideomotor region favors the response in an op-
posite fashion to the one given by the cue integration layer. This interference
effect slows down the final decision process, which causes the increase of the
RTs.

4.3.2 Stimulus-Response Incompatible Mapping

Since the previously reported simulation results of the two models are barely
distinguishable (see Figure 4.4), this shows that the used experimental paradigm
cannot clearly discriminate between these two plausible architectures. There-
fore, it is important to devise a method for determining which model best reflects
the information pathways of the brain.

To achieve this, inspiration was taken from the large amount of literature
on stimulus-response compatibility. The experimental paradigm was modified
in order to instruct the models to perform an incompatible stimulus-response
mapping. The task is to respond to a left cue with a motion of the right finger
(middle finger), and conversely to respond to a right cue with a motion of the left
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Figure 4.6: a) Results of Brass et al. (2000) redrawn, in order to account for the
congruency of the irrelevant stimulus location with the response, as in a typical Hedge
and Marsh experiment (Hedge & Marsh, 1975). The baseline conditions were omitted
to conform to that notation. The labels on the x-axis correspond to compatible and
incompatible relationships of the irrelevant stimulus location with the response. b)
Predictive results of the models while confronted to an SR incompatible mapping task.

finger (index finger). This switching paradigm has already been developed in ex-
perimental psychology in order to give more insights on a well-known behavioral
effect: the so-called Simon effect3 (Simon et al., 1981). Indeed, switching task
instructions from a compatible to an incompatible stimulus-response mapping
has been shown to result in a reversal of the classic Simon effect Hedge and
Marsh (1975). Several explanations of this phenomenon have been proposed
(Simon & Berbaum, 1990; Hasbroucq & Guiard, 1991; Proctor & Pick, 2003).
The most relevant argument to the present modeling is the stimulus-stimulus
congruency hypothesis. It stresses that facilitatory and interference effects are
mainly caused by the integration of spatial cues occurring in an intermediate
processing level, rather than in late motor preparation stages. This hypothesis
suggests that the reversal effect may be produced by a higher cognitive mecha-
nism, involved in the incompatibility inversion process and that it should occur
during the stimulus-response mapping process. As suggested in Section 4.2.1,
this inversion may lead to an increase of the computational load of the brain
area in charge of this process. Therefore, this mechanism was implemented by
switching the wiring of the stimulus-response association module and by apply-
ing an additional processing time.

In Figure 4.6a, the results of Brass et al. (2000) were redrawn, so as to ac-
count for the compatibility of the irrelevant stimulus location with the response,
as in a typical Hedge and Marsh experiment (Hedge & Marsh, 1975). Figure
4.6b shows the predictions of the two models, which display now different be-

3The Simon effect relates to the observation that even if the stimulus location is an ir-
relevant dimension, a spatial congruency between that irrelevant stimulus dimension and the
response significantly facilitates the initiation of the response.
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haviors. The first model reproduces the classic reversal effect, i.e. the relative
reaction times between the two conditions is reversed in contrast to the original
data. In other words, the RTs are faster when the irrelevant stimulus is located
at the opposite side as that of the motor response.

The second model exhibits qualitative differences. In the ideomotor and spa-
tial cue condition the reversal effect is reduced. This observation was expected
as the direct route between action observation and action execution permanently
activates the motor preparation centers in an ideomotor compatible way. This
effect can be seen in Figure 4.7, where a comparison of the neural dynamics of
the second model between the SR compatible and incompatible mapping con-
ditions. It shows that even in the incompatible mapping task an ideomotor
compatible movement observation still strongly favors the corresponding move-
ment execution, as the finger movement stimulus was unaffected by the inversion
process required by the task. Moreover, in the ideomotor and movement cue
condition, the overall RT is increased. A close look at Figure 4.7 provides the
explanation. Firstly, the movement observation is used to determine the correct
response, which is always on the opposite side. However, at the same time,
the ideomotor system enhances the spatially matching finger movement, and
as these two parallel processes always favor opposite responses, an interference
effect is constantly present and results in an overall RT increase.

The reverse phenomena, although less significant, can be observed during the
non-ideomotor conditions, see Figure 4.6. Indeed, in the spatial cue condition,
the Hedge and Marsh reversal effect increases slightly, whereas in the movement
cue condition the overall RT decreases slightly. This can be explained by the fact
that, in the models, when the observed/planned movement-pair is ideomotor
incompatible, the network tends to favor, but to a lesser extent, the execution
of the finger opposite the observed one. This opposite facilitatory effect therefore
reverses the interference observed in the ideomotor condition.

4.3.3 Metric of Spatial Representation

Predictions of the models concerning a variation along the metric of the
representation of spatial cue are presented. This was made possible by the
continuous, rather than discrete, representation of spatial and motion cues used
in the models. This modeling hypothesis, which follows the Dynamic Field
approach, predicts modifications in reaction times when stimuli are displaced
according to their representation metric. A new experimental paradigm is now
proposed in order to measure this effect.

It consists of the same paradigm as employed by Brass et al. (2000), with the
difference that the spatial cue, i.e. the cross, is no longer placed on a specific
fingernail, but in a variable position between that fingernail and the midline
of both fingers (see Fig. 4.8a). Simulation results showing the mean RT and
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arrow shows the effect, in RT, of switching from a compatible to an incompatible
mapping task. For comments on the figure, see text.

the RT difference between incongruent and congruent conditions as a function
of the relative location of the spatial cue are presented in Figure 4.8b. The
horizontal axis represents the normalized spatial cue location so that a value of
0 corresponds to the fingernail position and 1 to the midline.

Firstly, it can be seen in both ideomotor and non-ideomotor conditions, that
the mean RTs of the conditions requiring a response to the movement cue and
to the spatial cue change in an opposite fashion according to the spatial cue
location. Indeed, as the location of the spatial cue moves toward the midline,
its neural representation moves away from the finger location it corresponds
to. Consequently, its interfering effect in the movement cue condition, and
triggering effect in the spatial cue condition is reduced, producing respectively
a decrease and an increase of the mean RT. Moreover, since the effect of the
spatial cue is smaller in the ideomotor case, the decrease of the mean RT in
the movement cue condition is less significant than in the non-ideomotor case.
Second, the variation of the RT difference between incongruent and congruent
trials is described. During tasks requiring a response to a movement cue, a sim-
ilar decrease in RT difference in both ideomotor and non-ideomotor conditions
is observed. As mentioned above, a spatial cue getting closer to the midline
reduces the interfering effect of its internal representation on the decisional pro-
cess. Therefore, the original RT difference between congruent and incongruent
conditions gradually disappears and tend to zero. The reported effect in tasks
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Figure 4.8: a) The modification of the original experimental paradigm as used by
Brass et al. (2000) is illustrated. b) The predictions on the mean RTs and their
difference is shown while varying the location of the spatial cue.

involving a response to the spatial cue is similar. In both ideomotor and non-
ideomotor conditions, the RT difference does also decrease due to the reduced
compatibility between the location of the cue and that of the response. When
the spatial cue is not located on a fingernail, it takes more time to the system
to select the correct response. Thus, the interference effect of produced by the
movement cue is less pronounced in terms of reaction times, even if it is still
present internally. As can be noticed in the non-ideomotor condition, the inter-
ference in terms of the RT difference even disappears. Indeed, the time needed
by the system to trigger the response is greater than that needed to suppress
the interference due to to movement cue. In the ideomotor condition, since the
interference effect is greater than in the non-ideomotor one, it is still observable.

4.4 Discussion

This work addressed the cortical pathways subserving the neural mecha-
nism underlying human imitation. A computational neuroscience approach was
applied on paradigms developed in experimental psychology. Two biologically
inspired computational models capable of reproducing the experimental results
obtained by Brass et al. (2000) were presented. These models are in line with
other computational models addressing imitation mechanisms in both humans
and monkeys (Arbib et al., 2000; Demiris & Hayes, 2002; Wolpert et al., 2003),
in that they all assume a shared representation between movement observation
and action execution. In contrast, this modeling work is also largely inspired
by human behavioral phenomena reported in experimental psychology such as
the Hick’s law, the Simon effect and the Hedge and Marsh reversal effect (Hick,
1952; Hedge & Marsh, 1975; Simon et al., 1981). Furthermore, although one my
cast some doubt on the usefulness of the complexity of the models to reproduce
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the original data, it is important to understand that each computational stage
of the models is necessary in order to obtain a good fit of the behavioral data.
Indeed, based on the well-known dynamical properties of the neural field model
(see Section 3.2.2), the investigation of the possible network connectivity has
led to the conclusion that the architecture of the networks presented here is as
minimal as possible to account for the data. Nevertheless, according to this,
one may then question the generality of the results provided by the original
experiment on which this work is grounded.

Next, although the architecture of the two models differed in their informa-
tion pathways, the ideomotor compatibility principle was successfully displayed
by both models. The fundamental mechanism subserving the ideomotor princi-
ple is based on a comparison of observed action with internally planned actions.
The difference between the models is that the direct-matching model relies on
the hypothesis that a direct route between movement observation and move-
ment execution exists (Rizzolatti et al., 2001; Decety & Sommerville, 2003),
whereas the single-route model forces movement observation of be merged with
the other cues. In other words, the former model hypothesizes that the spatial
relationship between relevant and irrelevant stimuli is processed first at an inter-
mediate level, while the comparison between planned and observed motions is
conducted separately but simultaneously through an ideomotor pathway. Both
pathways then get merged in a final stage. In contrast, the latter model merges
all the information simultaneously. Since both models are biologically plausible
and do reproduce behavioral results, this raises the question of which model
might correspond best to the real cortical network.

As suggested in the presentation of the architecture of the models, to each
sub-network of the complete system was associated a specific brain area with
respect to the neurophysiological literature. Each experimental condition4 in-
volves the activation of all parts of the models, which respects the brain activa-
tion patterns as reported in several studies of imitation using fMRI. However,
this brain imaging technique only reveals which brain areas are active at a
given time. Consequently, the exact pathways followed by information across
simultaneously activated processes can not be uncovered by such a technique.
An alternative form of study, which could provide an answer to the question
raised by this modeling work, may use the analysis of the impairments following
from specific brain lesions. Here, in order to discriminate between the proposed
models, a novel stimulus-response experiment is proposed . The experimental
protocol of this new experiment is similar to that conducted by Brass et al.
(2000), except that the subjects are asked to respond to any of the spatial cues
with an incompatible response, i.e. they should respond to a left (right) cue
with a right (left) finger movement. If that experiment was to be conducted
and a strong Hedge and Marsh reversal effect was to be measured, this would
refute the direct-matching model and let the single-route model appear to be

4except the baseline conditions
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the most plausible. However, if one would observe the Hedge and Marsh rever-
sal effect, this may not necessarily refute the plausibility of the direct-matching
model. Indeed, the automatic imitative tendency can be easily overridden after
only a brief training (Heyes et al., 2005; Bertenthal et al., 2006). Therefore, it
would be essential that the experiment be performed with subjects who remain
totally unfamiliar with the task. Subsequently, it would be interesting to see
if such SR incompatible training may result in an effective suppression of the
ideomotor effect.

The results of the simulations also showed that the observation of a non-
ideomotor compatible finger movement results in a slight facilitation of the ini-
tiation of the opposite finger. This anti-facilitatory effect seems questionable,
as, to current knowledge, such a phenomenon has never been reported. This
may be a weakness of the models. The main reason for such effect to occur
is that, in the motor selection area, the process of ideomotor facilitation and
interference acts within the same metric as that of the decisional layer, i.e. by
considering the global amplitude of the population activity. Then, as the com-
petition among the motor plans is performed in that metric, the decrease in
amplitude caused by an ideomotor incompatible observed movement favors the
execution of the opposite finger’s motor plan. This raises the question of if, in
an effector selection task, the observation of a non-ideomotor movement with a
given effector, does negatively influence its selection, as shown by this compu-
tational study. Indeed, it was assumed that both observed and planned finger
movements, such as tapping and lifting, are encoded by means of directional
information within the same neural layer, a layer which also produces internal
competitive interactions. The principal arguments in favor of this hypothesis are
the facts that parts of the premotor cortex respond equally to observation and
execution of finger movements (Iacoboni et al., 1999), that movements in this
cortical area are partly encoded by means of directional information (Schwartz
et al., 1988), and finally that neural correlates of decisional processes have also
been reported in this brain region (Cisek & Kalaska, 2005).

At the first glance, these arguments may seem to contradict with the non-
observation of such an anti-facilitatory effect in the behavioral literature. Nev-
ertheless, an alternative hypothesis for which the present models do not account
for, could be suggested. The neural processing of the ideomotor compatibility
may be driven by an additional mechanism on top of that proposed here. Instead
of only considering the dynamic aspect of the movements, another mechanism
may favor the use of the same effector as that observed. This process would then
counteract and hence suppress the anti-facilitatory effect which was reported by
the present study. This hypothesis remains yet to be verified.

This work also assumed a continuous representation of visual stimuli. This
hypothesis is mainly based on neurophysiological evidence indicating that large
sets of neurons encode visual information in a distributed fashion, as reported in
brain areas such as the visual cortices and the superior temporal sulcus (Perrett,
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Harries, Mistlin, & Chitty, 1989; Andersen et al., 1997; Schadlen & Newsome,
2001; Jellema et al., 2004). Similarly to motor representations, competitive
interactions influence dynamically the internal representations of the visual in-
puts. In order to investigate whether such a continuous metric of stimulus
representation may faithfully corresponds to real brain mechanisms, a variation
of the original experiment was proposed. The models predict that a spatial cue
which location gets away from that of the fingers reduces its interfering and
triggering effect. As a consequence, it accelerates the initiation of the response
to movement cues and increase the reaction times to spatial cues. Moreover, it
also reduces the RT difference between congruent and incongruent conditions for
similar reasons. The present results also suggest that a maximum operation-like
effect might be involved between ideomotor and spatial compatibility processes,
the observed reaction times reflecting the time needed by the slower process to
either select the correct response or to inhibit the incongruent stimulus.

Finally, this modeling study assumed that the movements performed by
others are represented and encoded within the same frame of reference as self-
generated movements, which is in accordance with the direct-matching hypothe-
sis and the firing patterns of mirror neurons (Meltzoff & Moore, 1997; Rizzolatti
et al., 2001). Consequently, the spatial relationships at stake in these experi-
ments were assumed to be encoded in a limb-centered frame of reference. The
neural mechanisms underlying the transformation of visual information related
to the movements of others into a representation in ego-centric coordinates was
not considered here. However, since in this experiment the observed hand is
facing like in a mirror, the effect of this transformation was assumed to be
negligible. It is nevertheless an important issue in other situations where the
transformation is not constant or when several types of transformations may be
involved. This issue is addressed in the next chapter, which describes plausible
neural models allowing the transfer of information across different frames of
reference, and their implications on cortical sensorimotor processes.
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Summary

This chapter presented an investigation of the neural pathways and mech-
anisms responsible for automatic imitative behaviors. The goal of this study
was to illuminate the cortical processes underlying the behavioral expression of
the ideomotor principle by evaluating how the observation of others influences
the quality of one’s own performance. How does the observation of movements
performed by others interfere with or facilitate one’s own motor execution? One
hypothesis states that movement observation follows almost the same cortical
pathways as those mediating classical stimulus-response processes, and that a
high-level cognitive process is responsible for processing all these information
together in order to make decision. A second hypothesis suggests that a direct
route - independent from the route that mediates the decisional process - links
action observation processes with motor execution centers. Both models are
capable of reproducing the behavioral results reported by Brass et al. (2000) in
a stimulus-response task comprising abstract and imitative stimuli. Both mod-
els also integrate the principle of ideomotor compatibility, since they were built
based on the existence of a shared representation between movement observation
and action execution. In order discriminate between these two biologically plau-
sible models, a novel stimulus-response experiment, derived from that proposed
by Brass et al. (2000), was suggested. The idea behind this experiment consists
of requesting that the models modify their original stimulus-response associa-
tions, and hence respond to the instruction stimuli in an inverted manner. Since
this reversal process is believed to recruit a network that is independent from
the network mediating automatic imitative behaviors, one may thus see at which
level imitative responses and those associated to abstract stimuli are combined
to produce the final motor response. If the reversal equally affects the responses
to both types of cues this would suggest that a single selection process is at
play. However, if it only affects responses to abstract cues, this would support
a direct sensorimotor route between action observation and motor execution -
a route that bypasses motor selection processes.

In this study observed movements were assumed to be encoded within the
same frame of reference as self-generated movements. Despite the fact that this
modeling hypothesis accords well with the hypothesis of a common shared rep-
resentation between self and others’ actions, it may call for an explanation as to
how the visual information related to others’ movements can be transformed into
a representation compatible with that of one’s own movements. Although the
effect of the transformation in this experiment could be assumed to be negligi-
ble because of the configuration of the experimental setup, in other situations it
may nevertheless have a critical impact on human behavior. Consequently, this
issue is addressed in the next chapter, which describes plausible neural models
that allow the transfer of information across different frames of reference.
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Chapter 5

Frames of Reference

Transformations

The modeling study presented in this chapter consists
of an extension of the work which was published in:

Sauser, E. L. and Billard, A. G.. Three dimensional frames of references
transformations using recurrent populations of neurons. Neurocomputing.
64:5-24, 2005.
Sauser, E. L. and Billard, A. G.. View sensitive cells as a neural basis for
the representation of others in a self-centered frame of reference. In Pro-
ceedings of the Third International Symposium on Imitation in Animals
and Artifacts, Hatfield, UK. 119-127, 2005.

The modeling study described in the previous chapter made an important
assumption concerning the representations on which the neural informa-

tion processes take place. It was hypothesized that the frame of reference used
by the brain for imitation is common to most of the cortical areas described. In-
deed, the neurophysiological evidence of the existence of shared neural structures
implies that they should communicate within the same representation metric.
However, since visual information related to gestures or actions performed by
others enters the brain in a retinocentric frame of reference, it must first be
converted into a representation in a reference frame compatible with the encod-
ing of motor representations. Since this frame of reference has been suggested
to be primarily goal- or body-part- centered, the generated motor commands
must also be transformed into a coordinate system consistent with that of the
muscles.

In order to fill this gap, the problem of the transfer of information across dif-
ferent reference frames must be addressed. This is precisely the aim of the work
described in this chapter, which is mainly concerned with how cortical networks
may produce these fundamental transformations. After an introduction to the
general cognitive issues related to this problem, including their neurophysiolog-
ical foundations and its formal description, the results of this modeling work
are presented. There are several models, each built by combining the building
blocks underlying such transformations. The models mainly consist of variations
around the same theme, but also may be involved in different situations.
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5.1 Introduction

The transfer of information across multiple frames of reference is a problem
that the nervous system has to face in many cases. For instance, visuomotor
tasks, such as visually-guided movements, require that visual information gath-
ered in a retina-based frame of reference be transferred into a head-centered, a
body-centered, and a hand-centered reference frame. The manipulation of ob-
jects also requires retinal information to be transferred into an object-centered
representation. Moreover, when tightly linked together, proprioceptive, vestibu-
lar, visual, and sensorimotor representations are suggested to be the basis of the
body-schema, a meta representation of the body in the environment (Gallagher,
2000). Since these representations are encoded in various reference frames,
transformations are necessary to build a coherent view of the self. Other cog-
nitive skills such as motor imagery and mental rotation, are also dependent on
the brain faculty to perform such transformations.

Evidence that the brain encodes part of the visual and motor information in
different frames of reference is corroborated by a number of neurophysiological
experiments (Batista et al., 1999; Kakei et al., 1999; Ashbridge et al., 2000).
Links between these representations were hence supposed to be grounded on the
combination of various sensory inputs which further allows the transfer of in-
formation across different reference frames. For example, it has been suggested
that along the visuo-motor pathway the series of transformations, required for
transferring retina-based information into a body-centered representation, are
computed gradually by different groups of cells following a sensory gradient of
increasing complexity (Perrett, Harries, Mistlin, & Chitty, 1989; Burnod et al.,
1999). Considering now the ventral visual pathway, information has been shown
to flow from the primary visual cortex (V1) to the temporal lobes, including the
inferior temporal area (IT) and the superior temporal sulcus (STS). While the
primary visual areas encode visual information in a retina-based coordinate
frame, neural sensitivity gradually moves from this purely sensory-centered rep-
resentations toward more complex ones. For example, IT contains populations
of neurons that separately exhibit a sensitivity to a variety of objects. Some
of these neural ensembles are sensitive to the size and orientation relative to
an viewer-centered frame of reference, whereas others react more in an object-
centered fashion (Booth & Rolls, 1998). Similarly, neurons in macaques’ STS,
have been found to respond to specific human body parts and correlate with
various quantities such as the position, rotation and translation of limbs, hands,
faces and eyes, in multiple reference frames. Specific neural responses to com-
plex motions such as walking have also been reported (Perrett, Harries, Mistlin,
& Chitty, 1989).

In imitation, in addition to strict motor control issues, abilities for trans-
formations across different frames of reference are also necessary for transfer-

132



ring the representation of the perception of others movements into self-motor
representation, which in turn would allow imitation. Different forms of trans-
formations may be useful. First, goal-centered representations are prerequisites
for goal-directed imitation. They are a high-level abstract substrate which can
be readily be obtained by projecting the information related for instance to the
position and posture of the hand into the coordinate frame of the target ob-
ject. The result of this process is suggested to be responsible for the invariant
response of mirror neurons which sensitivity was reported to be goal-centered
(Fogassi & Gallese, 2002). However, the neural correlates of imitation are of-
ten reduced to the sole goal-centered activity patterns of the mirror neurons,
which, for recall, were recorded in the monkey brain. In human, the analy-
sis of the activity patterns of specific cortical areas involved during imitation,
revealed that the human mirror system may also show a sensitivity to body
parts-centered representations (Iacoboni et al., 2001; Koski et al., 2003). Thus,
it has become necessary to address the mechanisms underlying the imitation
of intransitive actions or movements. This however raises several important
computational problems which can be avoided while considering goal-directed
imitation. Importantly, in order to be able to imitate body movements, the
visual information representing the configuration of the limbs of another indi-
vidual, which are perceived in a viewer-centered frame of reference, must be
converted into a joint-centered representation.

To summarize, the ability to perform arbitrary transformations across frames
of reference is fundamental and necessary for more complex forms of imitation.
However, its underlying mechanisms remains still ill-understood and hence, its
understanding should be considered as important in order to provide the stages
for modeling the leap from simple to complex forms of imitation in animals. In
addition, it may also provide fundamental mechanisms on which higher cogni-
tive skills such as mind-reading may develop. Indeed, transformations across
different reference frames, are necessary steps to be able to put oneself in the
feet of others. Next, before addressing precisely the neural mechanisms under-
lying the brain ability to perform transformations across reference frames, this
problem, along with its solutions, is first stated in mathematical terms.

5.1.1 The Problem

The transformation across reference frames that is considered here basically
consists of transferring a vector representation from an orthonormal basis to
another. An illustration is given in Figure 5.1. In mathematical terms, the
question is how a vector �v given in a referential R can be transformed into �v ′

in R′, knowing the vector �v0 across the origins of the two reference frames, and
the axes of the referential R ′ expressed in R. Let assume R and R ’ to be given
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by

R = {O,�ex, �ey, �ez}
R ′ =

{
O ′, �e ′

x, �e ′
y, �e ′

z

}
(5.1)

where OO ′ = �v0, and �e ′
i, �ei, i ∈ {x, y, z} correspond to the principal axes of R ′

and R, respectively. The orientation of R ′ with respect to R is then given by
the transformation matrix MR′

, where

MR′
=
(

�e ′
x �e ′

y �e ′
z

)
. (5.2)

By writing down the classical transformations across reference frames, the fol-
lowing forward and inverse equations can be obtained.

�v = MR′
�v ′ + �v0 (5.3)

�v ′ =
(
MR′)−1

(�v − �v0). (5.4)

The projection of a vector �v from R to R ′ can be thus decomposed into one
translation across the origins and a transformation (MR′

)−1. Then, depending
on the available information, MR′

can be be written, for example, as a series
of three rotations, such that

MR′
= Rx(φx)Ry(φy)Rz(φz) (5.5)

where Ri(φi), i ∈ {x, y, z} correspond to the rotation matrices around axis i

with angle φi. Following this, the inverse of MR′
becomes

(MR′
)−1 = Rz(−φz)Ry(−φy)Rx(−φx) (5.6)

Therefore, the transformation can be performed serially through a translation
followed by three consecutive rotations. However, an alternative way to perform
the transformation can also be proposed. Since MR′

is considered as orthonor-
mal, (MR′

)−1 = (MR′
)T . Equation (5.4) can then be rewritten by using the

dot product, which gives:

�v ′ =
∑

i∈{x,y,z}

(
�e ′

i · (�v − �v0)
)
�ei. (5.7)

By applying this second solution, the overall transformation is reduced to a
combination of relatively simple vectorial operations, consisting of sums, dot
products, and vector scaling.

By means of these two methods, a vector �v given in a referential R can be
mapped into �v ′ in R ′. In the following, neural mechanisms allowing cortical
networks to perform these operations are suggested.
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Figure 5.1: A transformation across reference frames consists of transferring a vector
�v given in a referential R into �v ′ in R′.

5.2 A Fundamental Neural Building

Block

This modeling work started from the idea that sensory and motor informa-
tion is represented in a distributed fashion within populations of neurons. As
already mentioned in previous chapters, this computational paradigm has been
shown to be shared by several areas of the nervous system, including propri-
oceptive receptors, (Ribot-Ciscar et al., 2003), the motor cortex (Schwartz et
al., 1988; Kakei et al., 1999), the posterior parietal cortex (Batista et al., 1999;
Scherberger & Andresen, 2003) and the superior temporal sulcus (Ashbridge et
al., 2000). Moreover, the population vector coding has also been shown to be a
plausible way to interpret the macroscopic effect of the joined activities of these
large sets of neurons(Georgopoulos et al., 1982; Schwartz et al., 1988). Among
the types of information that are encoded in such distributed representations,
movement parameters such as the direction of movement, the velocity and the
spatial location of the body and body parts were shown to be represented in
both motor and visual terms. The neural encoding of objects revealed a sensi-
tivity to similar parameters. Importantly, these representations were shown to
be encoded within multiple frames of reference, ranging from viewer-centered
cartesian coordinates to muscle-centered reference frames. Thus, distributed
representations exhibiting a population vector-like encoding appear to be an
important principle of brain information processing.

Considerable attention has already been devoted to this problem and, conse-
quently, several relevant solutions have been proposed. The key point, common
to almost all studies, relies on the multiplicative response observed in large sets
of neurons which combine non-linearly different information sources such as eyes
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position in their orbit and the retinal location of an object. Combining these
information sources has been shown to be sufficient to compute the location of
the object in head-centered coordinates. Here, the present investigation seeks
whether population vector coding can be used as a principle mechanism to ac-
complish frames of reference transformations. The majority of related works
(Salinas & Abbott, 1995; Burnod et al., 1999; Baraduc & Guigon, 2002) model
the non-linear multiplicative response of the neurons by either assuming that
the activation function of the neurons produces a multiplicative response of
the neuron’s input (sigma-pi neurons) or that the synaptic strength between
two neurons could be gated by a third part neuron. In contrast, the present
approach follows the work of Salinas and Abbott (1996). The multiplicative
property of the population output is derived from the concurrent activity of a
population of integrative neurons. Indeed, keeping the integrative properties
of neurons is fundamental to remain in line with a biological account of the
neural response. Prior studies considering frames of reference transformations
using population codes with strictly additive synaptic inputs (Salinas & Abbott,
1996; Deneve et al., 2001; Van Rossum & Renart, 2004) have overlooked a major
effect: the population vector, resulting from such transformation, exhibits a dif-
ference in its amplitude relative to its original value. The need to consider this
issue is motivated by the importance of the amplitude of the signal conveyed
by distributed representations. For instance, in the motor cortex, the global
strength of the population response to a being executed movement represents
the instantaneous velocity of the end-effector, as well as its position in spherical
coordinates with respect to the center of its workspace (See Figures 2.7, 2.8 and
5.3 for illustrations of the information conveyed by the population response.)
(Kettner et al., 1988; Schwartz & Moran, 1999; Aflalo & Graziano, 2007). Con-
sequently, transformations of these signals have to ensure that the part of the
information considered here is not affected in an undesired manner. To fill this
gap, this work investigates a method by which one can reduce and constrain
the error produced by the neural field dynamics within strict and acceptable
bounds.

5.2.1 Vectorial Representations and Cosine-Tuning

In order to transform vectorial information through neural mechanisms, one
has first to consider a neural code capable of representing vector. Among the
different methods, distributed representations allowing population vector tech-
niques are considered. In contrast to the general from of the tuning which was
previously described in Chapter 3, the model of neuron was chosen here to ex-
hibit a cosine tuning to vectorial information. This choice was motivated by
two important points. First such a tuning for vectorial representations has been
shown to be highly probable since it has been suggested to be the most opti-
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a) b)

c) d)

Figure 5.2: Neural correlate of population vector coding. Tuning curves of a) a neuron
in the primary motor cortex sensitive to the movement direction of the hand, and b)
a neuron in the superior temporal sulcus responsive to the orientation of an observed
body. c) Activity of a cerebellar neuron sensitive to the foot position recorded in the
rat. A plane can be fitted to the data, which shows a linear relationship between the
foot location and the neural activity. d) Simulated neuron sensitive to a position in
space. It was also encoded using a cosine tuning centered on its preferred direction
indicated by the light arrow. (Adapted from Ashbridge et al. (2000); Casabona et al.
(2004); Georgopoulos et al. (1988)).

mal way to process visual and motor information (Zhang & Sejnowski, 1999;
Todorov, 2002). In Figure 5.2 neural correlates of such a cosine-like encoding
are illustrated. The second point is less related to biology. Indeed, cosine tuning
curve have shown a better compliance to analytical calculations (Ben-Yishai et
al., 1995; Xie et al., 2002). Although the dynamics of neural fields has already
been described at length in Chapter 3, a non negligible amount of definition will
be rewritten in this chapter. Indeed, since the subclass of neural fields which ex-
hibit a cosine tuning curve is described here along with a formal analysis of their
dynamics, it is important to redeclare the fundamental equations which governs
their behavior. Moreover, slightly different definitions will be provided here.
Nevertheless, the properties detailed in this chapter are still valid for networks
having other types of unimodal tuning curves, but their analytical description
would have been much more difficult to realize.

The definition of populations composed of neurons exhibiting a cosine tuning
is as follow. Let a continuous neural population be defined by an ensemble of
neurons where each of which is preferentially tuned to a preferred direction �r.
For a given population, the preferred directions are assumed to be uniformly
distributed along ΓN , a N dimensional subspace defined according to Equ. (3.5),
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which corresponds to the surface of a unitary hypersphere of dimension N+1. In
the following, only the cases where N ∈ {1, 2}, i.e., subspaces representing two
and three dimensional unitary vector space, are considered. Moreover, unless
N needs to be specified, it will be omitted.

Within a neural population, the membrane potential of a neuron is denoted
by u(�r, t), where �r corresponds to its preferred direction. f

(
u(�r, t)) is its firing

activity, where f is a non-linear function given by f(x) = max(0, x). The
neurons of a population exhibiting an ideal cosine-tuning to a vectorial input
�v(t) = βs(t)�s(t), where βs(t) = ‖�v(t)‖ and �s(t) = �v(t)/‖�v(t)‖ ∈ Γ, should have
a membrane potential equal to

u(�r, t) = βs(t) (�r · �s(t)) + α(t) (5.8)

up to a scaling factor. α(t) ∈ R can be an arbitrary constant. An illustration
of the neural tuning and the response at a population level is given in Figure
5.3. Then, in the present case, the population vector �p(t) is redefined in order
to consider the amplitude of the representation. It is given by:

�p(t) =
1

κ(α(t), βs(t))

˛
Γ

f
(
u(�r, t)

)
�r d�r (5.9)

where κ(α, β) is a normalization factor, such that, when the population encode
a vector �v(t) according to Equ. (5.8), �p(t) = �v(t). The exact expression of
κ(α, β) is given in Table 5.1. Note that the population vector is properly defined
only when β > −α. Otherwise, since α is inhibitory and stronger than β,
f(u(�r, t) = 0, i.e. the population is silent.

5.2.2 A Continuous Attractor Neural Network

Definition

A fully connected continuous attractor neural network is now considered.
Its dynamics is similar to that defined in Chapter 3 by Equ. 3.9 but with

Table 5.1: Expression of κ(α, β) under different conditions.

κ(α, β) N = 1 N = 2

0 < β ≤ − α 0 0

β > |α|
(

α
β

√
1 −
(

α
β

)2

+ acos
(
−α

β

))
π
3

(
2 + 3 α

β −
(

α
β

)3
)

0 < β ≤ α π 4π
3

κ(0, β) = κ0
π
2

2π
3
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Figure 5.3: Representation of the activity of a neural population exhibiting a co-
sine tuning. a) Circular representation of a population of neurons whose preferred
directions are distributed along Γ1. The dotted unit circle corresponds to a null ac-
tivity. b) Linear representation of the activity of the same population. c) Spherical
representation of Γ2. d) Population activity in that three dimensional space.

cosine-shaped recurrent weights. The neural dynamics then follows

τ u̇(�r, t) = −u(�r, t) +
˛

Γ

WR(�r ′, �r) f
(
u(�r ′, t)

)
d�r ′ + x(�r, t) + h(t) where

WR(�r ′, �r) = γ(η) (�r ′ · �r) (5.10)

where τ is the time constant of the neurons. WR are the recurrent weights that
exhibit symmetric, rotation invariant, and center surround excitation inhibition
characteristics. Note that, according to the definition of the recurrent weights
provided in Section 3.2.1 by Equ. (3.8), this weight profile corresponds to a
weight kernel where the breadth σ of the recurrent connectivity tends to ∞.
Indeed, in this case, the weights defined by Equ. (3.8) becomes cosine-shaped.
x(�r, t) is the external inputs, and h(t) the constant modulatory input. γ(η) =
κ(η, 1)−1 corresponds to a scaling factor of the recurrent weights, and η ∈]0, 1[
is a network parameter.

Stable Solutions or Attractors

In order to find the stable solution of this dynamical system, the membrane
potential of the neurons is supposed to exhibit a cosine-tuning such that

u(�r, t) = α(t) + β(t)
(
�r · �r0(t)

)
(5.11)

where α(t) ∈ R, β(t) ≥ 0 and �r0(t) ∈ Γ. Using this assumption, the recurrent
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convolution produces an amount of feedback given by
˛

Γ

WR(�r ′, �r) f
(
u(�r ′, t)

)
d�r ′ = κ(α(t), β(t))

(
�r · �r0(t)

)
(5.12)

where the exact form of the function κ is given in Table 5.1. In addition, the
external input is assumed to have the following form

x(�r, t) = βs(t)
(
�r · �s(t)) (5.13)

Then, replacing u(�r, t) in Equ. (5.10) using Equ. (5.11), and by dropping the
time variable results in

τ
(
α̇ + β̇(�r · �̇r0)

)
= −α + h − β(�r · �r0)

(
1 − γ(η)κ(α, β)

)
+ βs (�r · �s) (5.14)

where the time variable t has been omitted. Since Equ. (5.14) should be true
∀�r ∈ Γ, this equation can be split into three different equations, which can be
solved separately. They are

τ �̇r0 = �s − �r0

τ α̇ = h − α

τ β̇ = βs − β
(
1 − γ(η)κ(α, β)

)
= g(β) (5.15)

where g(β) is the function ruling the dynamical system associated with β. Then,
by defining α�, β� and �r �

p as the values of the corresponding variables at con-
vergence (t → ∞), it can easily be found that �r �

0 = �s and α� = h. However, a
general solution for β� can not be found analytically. An approximation of the
value taken by β� will thus be considered. Nevertheless, in some special cases,
analytical solutions for β� can still be obtained.

First, the case in which the external input x(�r, t) = 0 and the homogeneous
modulatory input h(t) > 0 is considered. By choosing a value for γ(η) such that
γ(η) = κ(η, 1)−1, rewriting Equ. (5.15) leads to

g(β) = −β

(
1 − κ(α, β)

κ(η, 1)

)
(5.16)

The equation g(β) = 0 has at least one solution, which is given by β� = 0. It is
stable for α ≤ 0 and becomes unstable when α > 0. Indeed,

∂

∂β
g(β = 0) = −1 + κ(α, 0)

{
> 0 if α > 0
< 0 otherwise

(5.17)

When α > 0, the dynamical system bifurcates and produces another solution
such that κ(α�, β�) = κ(η, 1). Since κ(α, β) = κ(η, 1) when α

β = η, the second
solution of the system is β� = 1

η α. Since ∂g(β)/∂β < 0, this solution is stable. It
corresponds to a response amplitude β� proportional to the modulatory input h.
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Figure 5.4: Activity profile of a population of neurons, sorted relative to their pre-
ferred direction �r (see Fig. 5.3), which are under the influence of an homogeneous
input h. By considering the global population activity, the effect of this modulatory
input is a multiplicative response.

The membrane potential of the neurons has thus the following stable attractor
state:

u�(�r) =

{
h
(
1 + 1

η (�r · �r0)
)

h > 0

h h ≤ 0
(5.18)

where �r0 depends on the initial state of the network. Similarly to Salinas
(2003b), when the network receives a constant excitatory global activation, it
will converge to an active state, in which the amplitude of the population vec-
tor is amplified proportionally to the external homogeneous activity (see Figure
5.4). Conversely, when the external activity is inhibitory, the network is turned
off. Each neuron becomes silent. This mechanism , known as gain modulation
(Salinas & Abbott, 1996; Salinas, 2003b) was already presented in Section 3.2.2
of this thesis.

Now, another case is considered in which the network receives an external
input x(�r, t) �= 0, and no modulatory input, i.e. h(t) = 0. By rewriting Equ.
(5.15), the amplitude β� after convergence can be found. It is given by

β� =
1

1 − γ(η)κ0
βs (5.19)

where κ0 = κ(0, β) is a constant. u�(�r) then becomes

u�(�r) =
1

1 − γ(η)κ0
βs (�r · �s) (5.20)

From this result, the network matches its external input x(�r, t) up to a scaling
factor.

Finally, in order to consider the whole solution of Equ. 5.15 when the two
types of inputs are applied, a linear approximation of previous solutions (Eqs.
(5.18) and (5.20)) is assumed. Summing up the two solution gives

u�(�r) ≈ h +
(

1
η

h +
1

1 − γ(η)κ0
βs

)
(�r · �s). (5.21)
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Figure 5.5: This figure shows the phase portrait of the dynamical system governing
the amplitude of the field response. a-d) The solution at convergence, the proposed
approximation and the error boundary are illustrated for different conditions. The
dimension of the network as well as the input parameters are given on each subplot.
In all these examples, η = 0.3.

Approximation Errors

Simulations of this system shows that Equ. 5.21 is not exact. Nevertheless,
a boundary on the error of this approximation can be found. In order to find it,
Equ. (5.15) which describes the dynamics of the system over β is considered.
In Figure 5.5, plots of this function for different values of the constants are
shown. In addition, the approximation given by Equ. (5.21) is also drawn. As
observed, the equation g(β) = 0 has only one solution for β > 0 and the function
g(β) exhibits an asymptotical convergence when β → ∞. The boundary on the
error that is considered here, corresponds to the distance between the value of
the approximation and the zero of the asymptote of g. The parameters of the
linear asymptote, defined as c1β + c0, can be found using the following system
of equations.

c1 = lim
β→∞

∂

∂β
g(β) (5.22)

c0 = lim
β→∞

g(β) − c1β (5.23)

Then, since the derivative of g(β) is given by

∂

∂β
g(β) = −1 + γ(η)κ(α, β) − β

∂

∂β
κ(α, β) (5.24)
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Figure 5.6: a-d) The errors due to the approximation are constrained under the
bound shown in thick line for different conditions. The range of the used parameters
are given on each subplots.

from Eqs. 5.23 and 5.23, the parameters of the asymptote are, for N ∈ {1, 2},

c1 = γκ0 − 1 (5.25)

c0 = αγ(η)χ + β0 where χ =

{
2 N = 1
π N = 2

(5.26)

As mentioned earlier, the error boundary E(η) is the difference between the zero
of the asymptote given by −c0/c1 and the approximation given in Equ. (5.21).
It gives

E(η) = αÊ(η) where Ê(η) =
γ(η)χ

1 − γ(η)κ0
− 1

η
(5.27)

As can be noticed, the bound is proportional to the modulatory input h(t) to
which α(t) converges, and is independent of the input amplitude β0(t). Fig-
ure 5.6 shows the value of this bound for difference values of η. Numerical
calculations of the exact error in several conditions are also displayed.

Now that the behavior of the recurrent network in response to its inputs is
known, the necessary information for performing frames of reference transfor-
mations should be extracted. As will be shown in the next section, adding a
second layer to the network is sufficient.
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Figure 5.7: Architecture of the fundamental building block. It consist of a two-layer
neural network capable of producing a non-linear composition of its inputs.

5.2.3 A Two-layer Neural Network

The goal of this section is to show how an extension of the presented neural
network can produce a multiplicative combination of its inputs, which will be
useful for performing transformations across frames of references (Salinas &
Abbott, 1995). Indeed, up to now, the output of network consists of a sum of
several terms, two of which reflect the network inputs, i.e., the vectorial and
the modulatory inputs, and a third term which is a non-linear multiplicative
combination of the inputs. In order to strictly keep that last term, a two-layer
architecture is built. It is illustrated in Figure 5.7.

The first layer of this extension consists of the original recurrent attractor
network. The second layer is composed of another population of neurons without
recurrent connectivity. It receives direct projections from the first population,
and inhibitory inputs designed to remove the contribution of the vectorial and
constant inputs. The input x̂(�r, t) of this second network, which variables will
further be denoted by a small hat, is given by

x̂(�r, t) = η f
(
u(�r, t)

)− η h(t) − η

1 − γ(η)κ0
x(�r, t) (5.28)

After substitution of the firing rate of the first layer given by Equ. (5.21) into
the previous equation, and by assuming that these neurons support a very fast
integration of their inputs, i.e., τ → 0 ⇒ û(�r, t) = x̂(�r, t), the firing rate of the
second layer becomes

f
(
û(�r)

) ≈
{

h (�r · �s) �r · �s > 0, h > 0
0 otherwise

(5.29)

This shows that the network is capable to encode independently two separate
quantities, which are the direction �s(t) and the amplitude h(t), regardless of
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the intensity of the directional input βs(t). In vectorial terms, this means that
given a vector �v(t) = βs(t)�s(t) and a scalar h(t), the population vector of the
network tends toward h(t)�s(t). This property, as will be explained in the next
paragraph, will greatly help design neural models of transformations between
frames of reference.

But before going into the details of the mechanisms of transformations,
synaptic projections across networks will be described, followed by a descrip-
tion of the architecture of gain fields, which are neural substrates capable of
combining different sources of vectorial information non-linearly.

5.2.4 Synaptic Projections across Neural Populations

In addition to the previously described form of the external input to a net-
work, a neural population can also receive synaptic projections from another
population. As already described in Section 3.2.3, in such network of networks,
in order to deal with several populations simultaneously, a new index is added to
the variables of the network. The index corresponds to the name of the network.

Two populations denoted by A and B are now considered. A projects its
activity to B through synaptic weights denoted by WA,B(�r ′, �r) such that the
external input of population B becomes

xB(�r, t) =
˛

Γ

WA,B(�r ′, �r) f
(
ûA(�r, t)

)
d�r ′ where

WA,B(�r ′, �r) =
1
κ0

(�r · �r ′). (5.30)

κ0 is the weights normalization factor given in Table 5.1. By considering the
output shape of the two-layer network given by Equ. (5.29), the result of the
synaptic projections can be calculated. It gives

xB(�r, t) = hA(t) (�r · �sA(t)). (5.31)

These synaptic projections to population B thus preserve the vectorial informa-
tion encoded in population A.

5.2.5 A Gain Field

Following from the neurophysiological findings of neurons sensitive to two or
more behaviorally related variables such as the position of the eyes and that of
an object, the gain field 1 hypothesis was proposed (Salinas & Thier, 2000). It
defines itself as a neural substrate where different sources of information are com-

1As often confused in the literature, it is important to mention that the term gain field may
refer to two different computational principle. Here, it mostly refers to the work by Salinas
and Abbott (1996); Pouget and Snyder (2000).
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bined. Neural models of gain field were then developed to model the underlying
mechanisms of the cortical ability to combine information non-linearly (Pouget
& Snyder, 2000; Salinas & Thier, 2000). Here, this work mainly follows the
basic architecture proposed by these previous modeling studies, but gain field
are deigned here using an assembly of the building blocks described in Section
5.2.3. As already mentioned, this structure will allow the system to preserve the
amplitude of the transformed vectorial information. Then, since this assembly
produces a new dimension in the neural representation, the neurons of the gain
field are now preferentially tuned to a direction �r = (�rA, �rB) ∈ Γ× Γ, where �rA

corresponds to preferred direction of the building block network, whereas �rB to
that along the new dimension. The gain field architecture is depicted in Figure
5.8. The external inputs come from two different neural populations, denoted
by A and B, which project separately to each dimension of the gain field. The
external inputs of the gain field are then

xGF(�rA, �rB) =
˛

Γ

WA,GF(�r ′, �rA)f
(
ûA(�r ′)

)
d�r ′ +

+
˛

Γ

WB,GF(�r ′, �rB) f
(
ûB(�r ′)

)
d�r ′ (5.32)

where GF denotes the variables of the gain field. By setting the synaptic weights
according to Equ. (5.30), the input of the gain field becomes

xGF(�rA, �rB , t)
(5.31)
= hA(t) (�r · �sA(t)) + hB(t) (�r · �sB(t)) (5.33)

Then, the output activity profile of the gain field can be found by substituting
Equ. (5.33) into Equ. (5.29), which gives

f
(
ûGF(�rA, �rB , t)

) ≈ (5.34)⎧⎪⎪⎨
⎪⎪⎩

hB(t) (�rB · �sB(t)) (�rA · �sA(t))
if hB(t)(�rB · �sB(t)) > 0, �rA · �sA(t) > 0

0 otherwise

The resulting activity profile is symmetric with a peak located at the intersection
of the directions encoded by the two input sources. Moreover, the amplitude
only reflects that of population B. This property will be useful in solving the
problem of transformations across frames of reference, which is described next.

5.3 Neural Models of Frame of

Reference Transformations

Recall the problem of transformation across frames of reference described
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Figure 5.8: Gain field architecture.

in Section 5.1.1. It consists of transferring a vector �v encoded in a referential
R into a vector �v ′ encoded in R′, knowing the translation vector �v0 across the
origins of the referentials, and either the series of rotation necessary to transfer
R into R′, or the principal axes of R′ expressed in R. The possible use of these
inputs in several neural models are described in the following sections. But first,
the method for performing translations of vectors is described.

5.3.1 Translations

Let �v be a vector in referential R, and �v ′ its projection in the referential
R′. Assuming that �v0 is the vector across the origins of both reference frames,
and that both referentials are aligned, i.e., MR′

= I in Equ. (5.2), it gives
�v ′ = �v − �v0. To perform the translation, the neural population encoding the
result �v ′ is assumed to receive in its input xv′

(�r, t), the difference between the
synaptic projections from the populations encoding �v and �v0, i.e.,

xv′
(�r, t) =

˛
Γ

W v,v′
(�r ′, �r) f

(
ûv(�r ′, t)

)
d�r ′

−
˛

Γ

W v0,v′
(�r ′, �r) f

(
ûv0(�r ′, t)

)
d�r ′

(5.31)
= (�r · �v) − (�r · �v0) = �r · (�v − �v0)

= �r · �v ′. (5.35)

where W v,v′
and W v0,v′

are defined according to Equ. (5.30). Then, by Equ.
(5.9), the output population vector can be seen as representing the result of the
translation which is �v ′.

5.3.2 Planar Rotations
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A mentioned earlier, a method for aligning the referential R′ with R consists
of performing a series of rotations serially. In the following a single rotation
model is described. Indeed, a complete transformation in three dimensions
corresponds simply in replicating the process three times.

The case of a planar rotation will first be considered. A vector �v in referential
R is rotated by an angle −φ to project onto �v ′, where −φ corresponds to
the angle between the two planar reference frames R and R′, with superposed
origins. �v, �v ′ and the amount of rotation −φ are separately encoded in three
neural populations. The angle −φ is represented as a a vector having direction
−φ with an arbitrary amplitude β−φ > 0. The output activity profile of the
corresponding population is described by

û−φ(�r, t) = β−φ (�r · �s−φ(t)) (5.36)

where �s−φ = (cos(−φ), sin(−φ)). In contrast to the translation operation, a
rotation is a non-linear transformation. An intermediary gain field, described
in Section 5.2.5, will help resolve this non-linearity. In the present case, the
inputs of the gain field (Equ. (5.32)) consist of projections from the populations
encoding the amount of rotation −φ and the input vector �v. They respectively
project to the first and second dimensions of the gain field. According to Equ.
(5.35), its output response becomes

f
(
ûGF(�rA, �rB , t)

) ≈ βv(t) (�rB · �sv(t)) (�rA · �s−φ(t)) (5.37)

Then, similarly to Salinas and Abbott (1995); Baraduc and Guigon (2002), the
rotation is encoded in the synaptic projections from the gain field to the output
population of the system. Using an analogy to the complex division, the rotation
of a unitary vector �r of an amount −φ, i.e., the angle given by the orientation
of the unitary vector �s−φ, is expressed by �r/�s−φ. The synaptic weights between
the gain field and the output population are then given by

W (�rA, �rB , �r)GF,v′
=

1
κ2

0

(�r · (�rB/�rA)). (5.38)

By Eqs. 5.37 and 5.38, the input xv′
(�r, t) of the output population becomes

xv′
(�r, t) =

˛
Γ1×Γ1

W (�rA, �rB , �r)GF,v′
f(ûGF

(
�rA, �rB)

)
d�rA d�rB

≈ (�r · (�v/�s−φ)). (5.39)

Finally, by using the population vector (Equ. (5.9)), the input of the out-
put population encodes approximatively the vector �v ′, which corresponds to
�v rotated by −φ. Note that the quantification of the errors produced by this
transformation is provided further in Section 5.4.3. Further, this mechanism

148



90°

0°

Ti
m

e

0° 90°-90° 0° 90°-90° 0° 90°-90°

0°
-90°

90°

0° 90°-90°

0

f(uv(r,t)) f(uv’(r,t))f(uφ(r,t))f(uφ(r,t)) f(ûGF(r,t))
Population

vector

θ(r )

θ(r )

θ(rB)

θ(rB)

θ(rA )

θ(rA)

0

f(u(r,t))

0° 90°-90°

Figure 5.9: (top) Evolution over time of the activity profiles of the involved pop-
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neurons of the gain field are shown for several time steps denoted by the marks on the
time axis. On the right-handside to each activity plot, the corresponding population
vector is shown. (bottom) Snapshot of the activities of the same populations at the
time step given by the left black arrow on the time axis.

underlying this transformation is illustrated in Figure 5.9, on top of which, the
evolution of the activity of the involved populations is shown while performing
a constantly varying rotation. It can be seen that the activity profile of the gain
field output is symmetric and that the peak is located at the intersection of the
directions currently encoded by the source populations. At the bottom of this
figure, a snapshot of the activities at a given time is shown. The amplitude of
the cosine shape of the input and output populations are equal, meaning that
the amplitude is preserved through the transformation.

5.3.3 Extension to 3D Rotations

While previous section described a rotation in 2D space, the present para-
graph addresses the rotation in 3D space. this transformation can be described
by a rotation of angle −φ around an axis �d ∈ R

3, ‖�d‖ = 1. The present model
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needs the rotation to be decomposed in three sub-transformations, shown in
Figure 5.10. Indeed, a rotation of vector �v in 3D space can be seen as a suc-
cession of three steps: 1) a projection of �v on the plane perpendicular to the
rotation axis �d, 2) a rotation of an angle −φ around �d and 3) the restoration of
the component parallel to �d lost during the projection. This process results in
a vector �v ′ that corresponds to �v rotated by an angle −φ around axis �d.

In order to project �v on the plane perpendicular to �d, connecting a network
encoding �v ∈ R

3 with a two dimensional population using synaptic projections
as defined in Equ. (5.30) is sufficient. The only constraint is that the preferred
directions �r of the second network have to be defined on the projection plane,
i.e., in {�r ∈ Γ2|�r · �d = 0}. After this projection, the projected vector denoted by−−→
proj �d(�v) is rotated as described in Section 5.3.2. Since the resulting vector lies
only in the projection plane, it is necessary to add the component of �v parallel
to �d lost during the projection. This component is given by (�v · �d)�d. Using direct
synaptic links from the source to the destination population defined by

W v,v′
(�r ′, �r) =

1
κ0

(�r · (�r ′ · �d)�d). (5.40)

and according to Eqs. (5.35) and (5.39), the synaptic inputs of the output
network becomes

xv′
(�r, t) =

˛
Γ×Γ

WGF,v′
(�rA, �rB , �r) f

(
uGF(�rA, �rB , t)

)
d�rA d�rB +

˛
Γ

W v,v′
(�r ′, �r) f

(
uv(�r, t)

)
d�r

≈ (�r · (
−−→
proj �d(�v)/�r−φ)) + (�r · (�v · �d)�d)

≈ (�r · (�v/�r−φ)) (5.41)

As a result, the input of the output population encodes effectively �v ′, which
corresponds to �v rotated by an amount −φ around axis �d.

150



5.3.4 3D Rotations

In the previous section, a three dimensional rotation around a fixed axis
required the transformation to be split into two streams. While one of them
processes the rotation of a vector projected on the plane perpendicular to the
rotation axis, the other computes the constant vectorial component lost during
the projection. Since such a split process could seem questionable in terms
of biological plausibility, this section presents a variation of that model which
processes the rotation directly. This new model involves a gain field of a higher
dimension. As will be shown, this additional cost allows the computation of the
transformation through projections from the gain field only.

At first glance, one could think that the rotation in three dimensions could
be directly derived from the model given in two dimensions (see Section 5.3.2.
However, the use of the synaptic weights given by Equ. (5.38) when the gain
field is defined in Γ1 × Γ2 rather than Γ1 × Γ1, the network response obtained
from the output synaptic projections, exhibits a bias toward the poles, i.e., the
points on the sphere intersecting with the rotation axis. Indeed, rewriting Equ.
(5.39) using WGF,v′

(�rA, �rB , �r) = (�r · (�rB/�rA)), in this three dimensional case
gives

xv′
(�r, t) =

˛
Γ1×Γ2

W (�rA, �rB , �r)GF,v′
f(ûGF

(
�rA, �rB)

)
d�rA d�rB

=
π

3

(
π�a⊥(�v ′) + 4�a

//
(�v ′)
)
· �r (5.42)

where �a⊥(�v ′) and �a
//(�v ′) correspond respectively to the components perpendic-

ular and parallel to the rotation axis �d of the rotated vector �v′. As shown by this
equation, the two components do not have the same scaling factor. Since the
factor corresponding to the parallel component is bigger, this explains the bias
toward the poles that was observed during preliminary simulations. In order
to balance equally the influence of each component, and hence to compute the
rotation accurately, a new term in the synaptic weights used in Equ. (5.42) was
added. The synaptic weights originating from the gain field are now given by

WGF,v′
(�rA, �rB , �r) = c0 (�r · (�rB/�rA))

[
1 − c1 (1 − �r · �d)2

]
(5.43)

where c0 and c1 are constants which value will be given next. Recalculating
Equ. (5.42) using the synaptic weights defined in Equ. (5.43) gives,

xv′
(�r, t) = c0

π

15
[
π(5 − 4 c1)�a⊥(�v ′) + 4(5 − 2 c1)�a

//
(�v ′)
]

(5.44)

Since the scaling factors of a⊥ and a
// must be equal, c1 can be determined.

π(5 − 4 c1) = 4(5 − 2 c1) ⇒ c1 =
5
4

4 − π

2 − π
(5.45)
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Figure 5.11: Architecture and connectivity of the model proposed to perform a
complete transformations of frames of reference through projections on the principal
axes.

Then, replacing c1 in Equ. (5.44), gives,

xv′
(�r, t) = c0

π2

3

(
1 − 4 − π

2 − π

)[
�a⊥(�v ′) + �a

//
(�v ′)
]

︸ ︷︷ ︸
�r·(�v/�s−φ)=�r·�v ′

(5.46)

Finally, by setting c0 to the inverse of the global amplification factor, i.e.,

c0 =
3
2

π − 2
π2

(5.47)

the input amplitude across the transformation is preserved. Following from
this development, by using the synaptic weights described in Equ. (5.43), a
network model built with a gain field having dimension Γ1 × Γ2 will conserve
the amplitude of the input vector in all possible directions.

5.3.5 Projections on the Principal Axes

The models presented up to here assume that the mechanisms of transfor-
mations across frames of references are based on a series of rotations, computed
one after the others. Although this technique may allow to compute all possi-
ble transformations, it requires as inputs the exact sequence of rotation angles,
which, in certain cases, may be difficult to obtain. An alternative method has
already been suggested in Section 5.1.1. Rather than performing three rotations
serially, transformations across reference frames can be performed by using pro-
jections on the principal axes forming a referential.

The neural model applying this principle and hence Equ. (5.7) is shown in
Figure 5.11. Five sources of information coming from five neural populations
are considered. They respectively encode the principal axes of R′ expressed in
R , i.e., �e ′

i, i ∈ {1..3}, the input vector �v, and the vector �v0 across the origin of
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both reference frames. Three gain fields perform the three dot products. Their
modulatory inputs are connected to the populations coding for the principal
axis �e ′

i∈{1..3} and their vectorial inputs are linked to the two populations coding
for �v and �v0. These gain fields then project to the output population using the
following synaptic weights, ∀i ∈ {1..3}

WGFi,v
′
(�rA, �rB , �r) =

1
κ2

0

(�rA · �rB) (�r · �ei). (5.48)

Then, according to the output activity profile of the gain fields given by Equ.
(5.37), each neuron of the final population receives a net synaptic input equal
to

xv′
(�r, t) =

∑
i∈{1..3}

˛
Γ×Γ

f
(
ûGFi(�rA, �rB)

)
WGFi,v

′
(�rA, �rB , �r) d�rA d�rB

=
∑

i∈{1..3}

(
(�v − �vv0) · �e ′

i

)
(�r · �ei)

= �r · �v ′ (5.49)

which shows that these synaptic projections convey the vector �v ′, corresponding
to �v expressed in R′.

5.4 Simulation Results

The results presented here consist first of simulation illustrations of the trans-
formation across reference frames as performed by the different models which
were proposed. Secondly, the accuracy of the methods is also quantitatively
reported. An important point must be mentioned concerning the simulations
involving neural populations representing three dimensional vectors. Since the
present modeling approach assumes continuous and uniform distributed repre-
sentations, and since in the three dimensional case an ideal uniform distribution
of direction on a unit sphere is not feasible (Marsaglia, 1972), an approxima-
tion had to be made in order to perform the simulations. Thus, an iterative
algorithm was applied to generate a quasi-uniform distribution of preferred di-
rections. For more details on this algorithm, the interested reader is suggested
to refer to Appendix A.1.

5.4.1 Visuomotor Transformations for Reaching

In order to illustrate the rotation mechanism as performed by the model
described in Section 5.3.2, a simple target reaching task is considered. The
target location �v perceived and encoded by the visual system in head-centered
coordinates has to be transferred in a body-centered frame of reference in order
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to plan the reaching commands. The eyes are assumed to be fixed in their
orbit. The input population of the model is encoding both the direction and the
distance to the target. The angle between the body and the head is then assumed
to be encoded in a population receiving proprioceptive information transmitted
by the corresponding muscles receptors. These data are injected into the model
which computes the vector �v ′ encoded with respect to a body-centered frame
of reference. Figure 5.12 shows the firing activity over time of these three
populations during the following three scenarios. In the first scenario, the head
rotates to follow closely the motion of a target that moves from left to right (from
−45◦ to 45◦). In the second scenario, the head remains fixed with respect to the
body, and only the target moves. Finally, in the last scenario, the head rotates
with respect to the body, while the body and the target remain static. The
simulations show that �v is correctly rotated according to φ. There is, however,
a delay in the representation of the target in body centered coordinates, which
is due to the time required for the network to propagate its information.

5.4.2 Transformations of Moving Targets

The simulations described in this section illustrate the ability of the model
which applies projections on the principal axes of the target referential, to per-
form transformations across reference frames. Simulations were conducted, in
which the target �v is following eight different trajectories. Figure 5.13 shows
superimposed the trajectories produced by the model and by classical mathe-
matical manipulation (Equ. (5.4)). Similarly to previous section, the trajecto-
ries were injected in the model in a viewer-centered reference frame. The task
was however to transform the location of the moving target with respect to
a referential centered on another part of the space and oriented differently to
that of the viewer, i.e., the transformation required both a translation and a 3D
rotation.

Both trajectories show a high qualitative resemblance. However, one can
observe a systematic shift in space and a slight deformation of the drawn fig-
ure. This is an artifact resulting from the non-uniformity of the distribution
of preferred directions in the neural populations. In other words, the neural
populations produce a non-uniform map of their inputs, resulting in a slight
deformation of the three dimensional representation of the target vectors. This
naturally depends on a given distribution of preferred directions. Moreover, it
is worth mentioning that the duration of the trajectories were deliberately slow
with respect to the system time constant. Indeed, if the movement to follow is
faster than the time for the network to converge, which depends on the time
constant τ of the network, the latter will not be able to follow accurately the
observed trajectory. It will only tend to match the current position of the target.
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Figure 5.13: This figure shows eight target trajectories that were followed by the
model which had to project the visually perceived location of the moving target on
the principal axes of a static frame of reference arbitrarily localized and oriented in
space. Dotted and plain lines correspond to the movement of the target movement
respectively transformed using classical mathematical techniques, and the model.

5.4.3 Approximation Errors

In addition to the errors that appear by discretizing continuous equations,
the approximation made in the mathematical development (see Equ. (5.21)) is
also a source of systematical errors between the theoretical result vector �v ′�,
computed with classical mathematical methods, and the output �v ′ produced
by the model. In order to quantify them, error measures were defined. Eβ is
the normalized error between the ideal amplitude of the transformed vector and
that given by the models, and E�r, the angular error on the direction. Both
measures are defined by

Eβ(�v ′, �v ′�) =
| ‖�v ′‖ − ‖�v ′�‖ |

‖�v ′�‖ (5.50)

E�r(�v ′, �v ′�) = acos
(

�v ′ · �v ′�

‖�v ′‖ ‖�v ′�‖
)

(5.51)

Errors in the Representation of Input Vectors

First of all, the ability of neural populations representing three dimensional
vectors to faithfully reflect their inputs was tested. Indeed, as mentioned ear-
lier, an ideal uniform distribution of preferred directions in three dimensions is
not possible, which may have some influence on the model accuracy. Several
networks with different sets of preferred directions were simulated. Their pop-
ulation vector response was then compared with different vectorial inputs they
received. The error measures resulting from these simulations are summarized
in Figure 5.14. They first show that the size of the network considerably in-
fluences its precision, as well as the system parameter η. The influence of η

explained by looking at Equ. (5.10) describing the network dynamics. Since
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Figure 5.14: Error measurements for different population sizes, expressing the ability
of an arbitrary three dimensional population with a quasi uniform distribution of pre-
ferred directions to represent its inputs. (left) Amplitude error Eβ , (right) directional
error E�r.

the factor γ(η), which defines the strength of the imperfect recurrent feedback,
decreases as η grows, the amount of errors closely follows this tendency.

In order to illustrate that this drift is mainly caused by the lateral weights,
Figure 5.15a shows the difference between the population vector recorded out
of a neural population, and the direction encoded by the input. As can be seen,
in almost all cases, there is a natural tendency for deviating from the direction
indicated by the external input. Figure 5.15b shows that, due to this imperfec-
tion, it may not be possible for an activity bump to sustain while keeping the
same direction. In this simulation, a constant modulatory input was applied to
the recurrent network while keeping its vectorial contribution null. In addition,
the membrane potential of each neuron was initialized so that the network is
encoding a random initial direction. Then, the evolution of the direction coded
by the population vector until convergence was recorded. The resulting trajec-
tories are drawn on a unit sphere given in Figure 5.15b. This indicates that,
for a non uniform distribution of preferred directions, the lateral weights define
specific directional attractors to which, in absence of vectorial inputs, the popu-
lation vector slowly converges. Nevertheless, since the distribution of preferred
directions is quasi-uniform, these attractors can be considered as relatively weak
if the strength of the external inputs is set to be strong enough.

Errors in the Transformations across Frames of Reference

Considering now the errors in the transformations across frames of reference,
Figure 5.16 shows the errors produced by the model which performs rotations
for different network parameters. Error measures of the models performing
planar and 3D rotations as described in Sections 5.3.2 and 5.3.3 are presented
in this figure. As expected by the theoretical boundary on the error (Equ.
(5.27)), the bigger η, the bigger is the error. In addition, an increase in the
amplitude βφ of the population expressing the amount of rotation, also generates
an augmentation of the error. This secondary source of errors, which is not
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a) b)

Figure 5.15: a) The difference between the location of the external input and the
resulting population vector is shown for a neural population encoding a three dimen-
sional vector. b) Illustration of the directional attractors generated by an imperfect
uniform distribution of preferred directions, while the population receives only an ho-
mogeneous input. Each line terminated by a dot on the unit sphere corresponds to a
trajectory followed by the population vector of the network.

accounted in the expression of the boundary, does however not exceed that
limit. The directional error E�r is not shown here. In the 2D case, since the
uniformity of the preferred direction is ideal, this error is negligible. In the 3D
case, since the rotation is performed within a neural population evolving in two
dimension, the resulting errors in direction is equivalent to that presented in
Figure 5.14(right), which corresponds to errors in the internal representation of
the vectorial input. Indeed, by comparing the error of the networks with N = 1
and N = 2, besides the fact that the variance is bigger in three dimensions
(N = 2), one can observe a combined effect on the system parameter η. The
difference between the 3D and the 2D case is that, in the former case, the mean
error Eβ is smaller for high values of η, and bigger for small values. This property
is the result of the mixture of the effects of η on the ability of a population to
faithfully represent its input and of generating errors due to the mathematical
approximation.

Next, Figure 5.17 shows the errors produced by the model based on projec-
tions on principal axes as described in Section 5.3.5. Similarly to the previous
models, the bigger is a population, the smaller are the errors. Moreover, the
parameter η has also an ambivalent influence on the network errors. On the one
hand, small values of η increase the strength of the recurrent connections, and
consequently increase the errors due to an imperfect distribution of preferred
directions. On the other hand, big values induce more errors as reported in the
Equ. (5.27) describing the boundary of the error resulting from the mathemat-
ical approximation given by Equ. (5.21). These two properties explain why, in
Figure 5.17a, an optimum can be observed. Further, this model may seem to
produces bigger errors than the previous ones. However it should be mentioned
that it performs a complete transformation, including translation and three pro-
jections, whereas the previous model has to be replicated three times in order
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Figure 5.17: Error recorded during a simulation batch of the model described in
Section 5.3.5. Different populations with different parameters were given random
input vectors and frame of references. a) Errors in the conservation of the amplitude
of the input vector. b) Errors in the accuracy of the direction of the output vector,
resulting from the transformation.

to realize the same computation.

5.5 Discussion

Biologically plausible mechanisms of transformations across frames of refer-
ence have been presented. They are based on neural computations of vectorial
operations such as translations, rotations and projections on principal axes. Two
main strategies were described. One assumes that three dimensional transfor-
mations are realized through a serial composition of rotations, whereas the other
considers vectorial projections on principal axes. In order to combine multiple
information sources, both models are based on a neural substrate following from
neurophysiological findings: the gain field (Salinas & Abbott, 1995; Salinas &
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Thier, 2000; Xing & Andersen, 2000; Deneve et al., 2001; Deneve & Pouget,
2003; Van Rossum & Renart, 2004), which has been observed in several sensori-
motor areas (Kakei et al., 1999; Scherberger & Andresen, 2003). In contrast to
common uses of gain fields, this modeling approach considers a neural architec-
ture composed of two layers, which allows to compensate for an effect resulting
from the attractor dynamics of a population of neurons. Indeed, a shown by this
work, a purely multiplicative interaction between inputs within an gain field is
not straightforwardly produced. Therefore, if one assumes that the amplitude
of the neural response is a relevant factor used by the nervous system, which
is indeed the case (Kettner et al., 1988; Casabona et al., 2004), a mechanism
suppressing the undesired effects produced by a gain field has to be considered.
In addition, the present investigation assumed a mathematical approximation
in the network response, but the resulting error was shown to lie within strict
and acceptable bounds.

The simulations results suggest that the transformation accuracy could be
correlated with the uniformity of the distribution of the preferred directions
along populations of neurons. This results raise the hypothesis that learning
to be precise may consist of recruiting more neurons within a population and
then of uniformizing their preferred directions. However, the model’s assump-
tion that a reference frame is represented by a population of neurons, having an
uniform distribution of preferred direction and exhibiting a cosine tuning curve
that depends on the coding direction, is not representative of all neurophysiolog-
ical data (Amirikian & Georgopoulos, 2000; Scott, Gribble, Graham, & Cabel,
2001). Nevertheless, several solutions to this problem have been proposed. For
instance, Scott et al. (2001) suggested that non-uniform distributions do not
prevent specific brain areas to pick up uniform sub-populations or to ponder-
ate the weights of each neuron in an inversely proportional manner relative to
the distribution of preferred directions. In parallel, mechanisms of synaptic
regulation and of neural adaptation have also been shown to partly solve this
problematic uniformity issue in a model of working memory (Compte et al.,
2000; Stringer et al., 2002; Turrigiano & Nelson, 2004).

Two different classes of models were presented in this chapter. One class as-
sumes that the transformations across frames of reference in three dimensional
space is done through a series of rotations performed serially, whereas the other
class assumes parallel projections of vectorial information onto the principal
axes of the corresponding reference frame. An important point which should be
emphasized here is that both mechanisms may be used by the brain, but for dif-
ferent purposes, depending on which information is available in a given stage of
the sensorimotor processes. Indeed, the hypothesis that transformations across
reference frames are performed serially is in line with the gradient hypothe-
sis for sensorimotor transformations which was suggested to follow separately
parieto-medial and fronto-medial pathways, respectively for the computation of
visuomotor spatial relationships and for the control of movements (Burnod et
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al., 1999; Battaglia-Mayer, Caminiti, Lacqaniti, & Zago, 2003). On one hand,
performing a series of rotation may be more efficient when considering sensori-
motor transformations for reaching. Since reaching-plans have been suggested
to be encoded in head-centered coordinates (Batista et al., 1999), the informa-
tion related to the position of the hand has thus to be transferred into this frame
of reference for an accurate planning. Then, due to the mechanical constraints
of the configuration of the limbs, which are arranged in a serial fashion, it seems
more natural for the brain to compute the forward kinematics of hand position
in visual space through a series of rotations which parameters are provided by
proprioception that is partly encoding the orientation of the limbs.

On the other hand, the use of a mechanism of projections on the principal
axes may be more adapted to transformations within cortical ares concerned
with visual processing such as STS or IT, which are brain regions known to be
associated with the recognition of various body and object features in multiple
reference frames (Perrett, Harries, Mistlin, & Chitty, 1989; Perrett et al., 1990).
For instance, let consider a simple imitation task requiring the mimicry of the
location of the hand of a demonstrator with respect to his/her body. This
task mainly needs the transfer of the visual representation of that hand in a
self-centered frame of reference. By observation only, one has access to all
the necessary information in a viewer-centered reference frame, which are the
location of the demonstrator’s body and hand, as well as his/her principal axes
determining his/her three dimensional orientation in space. Therefore, in such
a situation, the second method should be more efficient, because obtaining the
corresponding rotation vectors would require more computations.

The main hypothesis, raised by the part of this modeling study concerned
with projections on principal axes, is that it is based on the assumption that
orientation sensitive cells in the visual areas STS and IT, to state an example,
may be grouped in populations that encode the principal axes of the observed
body or object. If this was shown to be true, this would imply that such groups
of neurons are used in the visual processing pathway as a vectorial basis for
body- or object-centered representations. Unfortunately, there is no conclusive
evidence of such an encoding, yet. Indeed, no systematic experiment have been
found to show a complete description of single cell sensitivity to all possible
orientations. Moreover, it may seem dubious that these cells would encode the
three principal axis, since such a representation would be redundant. Neverthe-
less, this hypothesis deserves to be more extensively investigated, as this could
provide further evidence on the mechanisms of transformations across frames of
reference in the cortical visual streams.

Further, by construction of that model, the time required for the model to
perform a frames of reference transformation is independent on the orientation
of the frames of reference. Such a result would seems to be in contradiction with
the observation that humans produce longer reaction times, when required to
perform mental rotations in an "unusual" orientation, such as shifting an image
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upside-down. One could, however, imagine that another mechanism is at play.
In the absence of visual input, this mechanism may set the representation of
the principal axes to a default state which may express an expectation of the
system to find an person or object in a given orientation, e.g., in a vertical and
standing posture for a person. In this case, the network state in the model will
take more time to match an observed orientation different from that predicted.
Several findings from experimental psychology may argue in this direction. For
instance, the time required to perform motor imagery tasks has been shown
to be highly dependent on the actual posture of the person executing such
tasks (Jeannerod & Decety, 1995; Lange, Helmich, & Toni, 2006). In this case,
the default state would be provided by proprioceptive signals. In addition, an
alternative hypothesis related to this timing issue is that this delay could also
be the result of a longer processing phase during the recognition of the features
of bodies and objects, which are then used to set the landmarks for determining
the axes.

Finally, concerning the issues of learning, it is clearly not in the scope of
this work to describe mechanisms allowing the learning of sensorimotor trans-
formations. Indeed, several powerful techniques have already been proposed by
other research teams (Zhang, 1996; Stringer et al., 2002; Meńard & Frezza-Buet,
2005). Moreover, since local synaptic modification rules may be tuned to drive
the synaptic weights to converge toward a given desired state, the aim of this
work was rather to determine that final stage, that may be reached after learn-
ing. Importantly, by determining this target state, the approach adopted in this
work has nevertheless made possible a mathematical analysis of the behavior of
the network.
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Summary

This chapter described two biologically plausible neural mechanisms allowing
the transformation of vectorial information across different frames of reference.
One class of models assumes that three dimensional transformations are realized
through a series of rotations, whereas the other considers a direct mapping into
the target reference frame through vectorial projections on principal axes. Both
mechanisms may be involved in different parts of the overall cortical processing
scheme: the former in the processing of proprioceptive information, the latter in
purely visual information processing. In contrast to related modeling studies on
sensorimotor transformations, this work paid special attention to the amplitude
of the signal to be transformed, i.e., the neural response of the source population.
The amplitude of the population vector conveys important information that
must be preserved across transformations.

These neural mechanisms only make up a small building block of the com-
plex cortical network involved in imitation. They also do not provide any clue as
to how transformations across reference frames may be understood in terms of
cognitive structures and pathways. For instance, since behavioral studies have
shown that different imitative strategies involving different transformations can
be in charge of imitative behaviors, one might suggest the existence of sepa-
rate pathways processing separate strategies. How might such a hypothesis be
tested? In order to address this question, this work develops a neural model that
uses the mechanisms of transformations across frames of reference proposed in
this chapter. The next chapter describes this model and an experiment designed
to test it. In conjunction with experimental results, the behavioral predictions
obtained from the simulations of this model help to clarify the cortical mecha-
nisms of imitation.
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Chapter 6

Interferences in the

Transformation of Frames

of Reference

The study presented in this chapter consists of an
extension of the work which was published in:

Sauser, E. L. and Billard, A. G.. Interferences in the transformation of ref-
erence frames during a posture imitation task. In Proceedings of the In-
ternational Conference on Artificial Neural Networks, ICANN 07, Porto,
Portugal. 2007.

This chapter describes a modeling study which illustrates how the mecha-
nisms of transformations across reference frames may be applied in order

to model a specific part of the neural processes underlying imitation. Like the
work described in Chapter 4, this study aims to propose a neural model along
with predictions related to its behavior. In particular, a biologically-inspired
neural model addressing the problem of transformations across frames of ref-
erence in a posture imitation task is presented. This work is based on the
hypothesis that imitation is mediated by two concurrent transformations that
are selectively sensitive to spatial and anatomical cues. In contrast to classi-
cal approaches, separate instances of this pair of transformations are assumed
to be responsible for the control of each side of the body. In addition, an ex-
perimental paradigm was also devised; this paradigm allows modeling of the
interference patterns caused by the interaction between the anatomical and the
spatial imitative strategy.

6.1 Introduction

This work focuses on the processes of transformations across frames of ref-
erences required for imitation of arbitrary gestures, and particularly on two
different strategies that are anatomical and spatial imitation. In psychology,
anatomical and spatial imitation are usually considered distinct (Brass et al.,
2000; Koski et al., 2003; Heyes & Ray, 2004; Chiavarino, Apperly, & Humphreys,
2007). On one hand, anatomical imitation considers observed movements with
respect to the observed person’s body. It respects the joint angles between the
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body and limbs, and hence facilitates the mapping between the left and the
right side of the demonstrator and those of the imitator. On the other hand,
spatial imitation considers the demonstrator movements, but only according to
the spatial location of the limbs with respect to the observer, regardless of the
orientation of the demonstrator. When the imitator and the demonstrator are
facing each other, this form of imitation is usually denoted as specular or mirror
(Brass et al., 2000; Koski et al., 2003; Bertenthal et al., 2006; Chiavarino et al.,
2007).

The main hypothesis adopted by this study is that the computations associ-
ated with these two forms of imitation are simultaneously computed in the brain.
According to a developmental point of view, these strategies may have evolved
within two different stages. While spatial imitation may originates from early vi-
suomotor development (Piaget, 1978), anatomical imitation may have evolved
later along with the development of the body schema which respects strictly
body configurations (Gallagher, 2000). Next, a competitive process is needed
to select, with respect to the task constraints, the correct response among those
provided by the two imitative strategies (Brass et al., 2005; Bertenthal et al.,
2006; Chiavarino et al., 2007). As already mentioned in Chapter 2 of this the-
sis, the competition between multiple sources of information usually produces
measurable interferences on reaction times and movement variability (Simon et
al., 1981; Brass et al., 2000; Kilner et al., 2003). This is precisely how this work
will attempt to validate or refute its modeling hypotheses. Indeed, in addition
to the previous hypothesis, anatomical imitation is suggested to be considered
less strictly than in psychology. In fact, this work proposes that an anatomi-
cal mapping between ipsilateral limbs, which mirrors the relationship between
the limb joint, also exists. Therefore, distinct pairs of spatial and anatomical
transformations are assumed to be responsible for the control of each side of
the body. As a consequence, when an arm posture is presented with either the
left or the right arm, an imitative response is hypothesized to be computed in
parallel for both arms of the imitator.

Attempts to understand the neural mechanisms and brain pathways respon-
sible for such automatic behaviors have been reported by many researchers. Sim-
ilarly to the modeling study addressed in Chapter 4 of this thesis, the neural field
apporach, has been applied to the problem of conflicting transformations across
frames of reference. Indeed, among other properties, and in contrast to classi-
cal binary models of stimulus-response compatibility, this framework allows the
modeling of continuous variables (Erlhagen & Schöner, 2002; Schöner, 2002),
which are more common in imitative tasks. Next, an experimental paradigm is
first presented, which will help determine the possible interferences between dif-
ferent imitative strategies during a task requiring the imitation of meaningless
body postures. Then, a neural model, capable of computing both anatomical
and spatial imitative transformations concurrently is described. And finally, the
particular interference patterns predicted by the model and their implications
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Figure 6.1: Stimulus and response variables and frames of reference (FR) relative to
the observer’s point of view, and to his/her left and right arm.

for future research are discussed.

6.2 Experimental Setup

This work considers the imitation of body postures where the orientation of
the right upper arm can be varied. The visual perspective of the demonstrator’s
body can also vary from side to front view. The task instructions require either
a spatial or an anatomical imitative response with either the right arm (the
corresponding one) or the left arm (the opposite one). The stimulus variables,
shown in Figure 6.1, are: ϕD, the demonstrator arm elevation, θD, its orien-
tation relative to the body in the horizontal plane, and φD, the orientation of
the body with respect to the observer. The response variables are: ϕI

L and ϕI
R,

the elevation of the left and right arm of the imitator, and θI
L and θI

R, their
orientations on the horizontal plane. The desired responses are:

θI,A
L = θI,A

R = θD

θI,S
L = −θI,S

R =

⎧⎪⎨
⎪⎩

−180 − (θD + φD) θD + φD < −90
θD + φD |θD + φD| ≤ 90

180 − (θD + φD) θD + φD > 90

(6.1)

where the additional index, A or S, denotes the anatomical or spatial imitative
strategy, respectively. An illustration of these transformations are shown in Fig-
ure 6.2. Since both transformations are hypothesized to be processed in parallel,
both are expected to have an influence on the resulting imitative behavior. So
let define the discrepancy D between the response of both strategies, which is
given by the difference between the response of the instructed strategy and that
of the other. Spatial and anatomical transformations are said to be perfectly
congruent when the discrepancy D = 0. Note that ideal congruency conditions
are not equivalent for both arms.

An experimental trial consists first of the presentation of a starting posture
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Figure 6.2: Examples of anatomical and spatial imitative strategies in various condi-
tions. The discrepancy between the response of the transformations are given for each
arm.

which the subject (or the model) is requested to imitate according to the task
instructions (either spatially or anatomically, and with either the left or the
right arm). Then, the arm posture is abruptly changed, and the subject has
to keep imitating as fast as possible. During a single trial, only the arm pos-
ture is modified, whereas the body orientation is left unchanged. Experiment 1
investigates the interferences produced by both imitative strategies when their
initial responses are congruent and the amplitude of the change of arm posture
is kept constant across the trials. The pair of initial and target postures consists
of the arm raising from a neutral down position (ϕD = 0◦), where the responses
of both spatial and anatomical transformations are always congruent, to a po-
sition on the horizontal plane (ϕD = 90◦). The arm elevation is thus the only
degree of freedom which changes during a trial. Complementarily, Experiment
2 investigates the influence of a horizontal postural change, in which amount
is denoted by ΔθD. Indeed, in such conditions, depending on the stimuli, the
discrepancy between the responses of the transformations may vary.

6.3 Neural Model

This section first briefly reminds the reader about the present modeling
approach which was already described at length in Chapter 3 and applied in the
modeling of an experimental study in Chapter 4. It consists of building networks
composed of neural fields for representing cortical functions. To recall, a neural
field is composed of a continuous set of neurons u(�r, t), where each of them fires
maximally for a specific value �r uniformly distributed in the parameter space Γ2.
Indeed, since the modeled variables consist of arm and body orientations, the
considered parameter space is the ensemble of directions in the three dimensional
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Figure 6.3: (left) Graphical representation of a neural field activity. (right) Evolution
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space. As already defined in Chapter 3, the neural field dynamics follows

τ u̇(�r, t) = −u(�r, t) +
˛

Γ

WR(�r ′, �r) f
(
u(�r ′, t)

)
d�r ′ +

+x(�r, t) + h(t) (6.2)

where τ is the membrane time constant of the neurons, WR the recurrent synap-
tic weights and f the activation function. x(�r, t) and h(t) are, respectively, the
external input and the background, task-related, input. There is, however, a
small difference with the model definition provided in Chapter 3. The gaussian
function G (Equ. (3.7)) which is used to generate the synaptic weights had to
be redefined in order to include the ability to perform linear transformations.
It is given by

G(�r ′, �r, σ) =
[
exp
(

(M�r ′)T�r − 1
2σ2

)
− e−1/σ2

]
/ (1 − e−1/σ2

) (6.3)

where M refers to a transformation or mapping matrix. According to definition
introduced in Equ. (3.8) of Chapter 3, the recurrent weights, as well as the
projections across neural populations are generated following

W (�r ′, �r) = α
[
G(�r ′, �r, σ) − δ

]
(6.4)

where α denotes the strength of the weights and δ is a normalization term.
In the case of the recurrent connectivity, M = I, i.e., the identity matrix,
but different mappings will be described later in the text. This type of neural
dynamics is known to form an attractor bump on the surface of the neural
field (see Fig. 6.3), through which this class of networks is suggested to convey
information. As a read-out mechanism, the population vector �p(t) ∈ Γ2 defined
in Equ. (3.11). Finally, the formalism used to consider the connectivity and the
inputs of neural fields within larger networks corresponds to that described in
Section 3.2.3.
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each sphere represents a neural field which dynamics is driven by Equ. (3.9). The
complete network is finally governed by the set of equations defined in Section 3.2.3,
whose parameters are summarized in Appendix B.2.

6.3.1 Network Architecture

The model architecture, depicted in Figure 6.4, consists of two networks, each
of which is associated with a specific arm. In addition, within a single network
there are two main streams, each of which separately processes the spatial and
the anatomical transformation. Their respective output is then projected to
a competitive network, performing the selection of the appropriate response.
Since the considered task instructions clearly specify which arm should be used,
an effector selection process was not modeled.

External inputs

As external inputs, the two streams receive the visually perceived arm and
body orientation vectors �sArm and �sBody ∈ Γ3. According to the visual reference
frame of the observer (shown in Fig. 6.1), they can be written as

�sArm =

⎛
⎜⎝

sin(ϕD) sin(θD + φD)
cos(ϕD)

− sin(ϕD) cos(θD + φD)

⎞
⎟⎠ and �sBody =

⎛
⎜⎝

sin(φD)
0

− cos(φD)

⎞
⎟⎠
(6.5)

These inputs are fed into the input populations of each transformation using
Equ. (3.16). Note that the spatial transformation does not need information
relative to the orientation of the demonstrator’s body. In addition, the input
populations also receive an external modulation applied asymmetrically to each
stream, so that the global activity of the network performing the relevant trans-
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formation (given by the task instructions) is stronger. While the inputs of the
relevant network receive a positive modulation, those of the other receive inhi-
bition, i.e., hTask and −(hTask +Δh), respectively, where hTask > 0 is a constant
modulatory term, and Δh > 0 is an additional term which allows us to vary
the strength of the competition. Indeed, as Δh increases, the network corre-
sponding to the irrelevant transformation becomes more inhibited. Above a
certain threshold, it is completely inactive. This case, where only the relevant
transformation is active, will further be considered the baseline condition.

Spatial transformation

The spatial transformation consists of a mapping between the visually per-
ceived orientation of the demonstrator’s arm and the imitator’s left and right
arm, regardless of the demonstrator’s body. For a given arm, two neural pop-
ulations are required. The former receives the visual input and is connected
to the latter through synaptic projections. Since the spatial mapping does not
require any other information, it can be performed by a direct projection. Using
Eqs. (6.1) and (3.16), the correct mapping functions for the left and the right
arm are given by M = ML,Sp and M = MR,Sp, respectively, where

ML,Sp =

{
diag(1, 1,−1) �sArm

z < 0
I otherwise

and

MR,Sp = diag(−1, 1, 1)ML,Sp (6.6)

Since the frames of references of each arm are symmetric, so are the mapping
matrices.

Anatomical transformation

The anatomical transformation requires the combination of two variables,
i.e., the orientation of the demonstrator’s arm and that of his/her body. Neu-
rophysiological data suggest that such a transformation is performed through
gain fields, which are neural populations combining inputs from several external
sources (Scherberger & Andresen, 2003; Deneve & Pouget, 2003). Similarly to a
neural model of gain field for transformations across reference frames described
in Section 5.3.4 of this thesis, a gain field is defined as a continuous set of neural
fields denoted by GFφ, where each of them is preferentially tuned to a specific
body orientation φ. The population encoding the demonstrator’s arm orienta-
tion projects to each of these sub-networks using Equ. (3.16) with M = Ry(−φ)
as the mapping function. Ry(−φ) corresponds to the rotation matrix around
axis Y with angle −φ. An additional term in the synaptic weights, as described
in Section 5.3.4, was also applied in order to avoid a bias toward the pole in
the transformation and hence to perform an accurate rotation. Next, the body
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orientation is fed to the subfields through their modulatory input hGFφ(t) us-
ing Equ. (3.17), with M = I and �rGFφ = (sin φ, 0,−cos φ). Finally, the gain
field projects to the output population of network by synaptic projections with
M = I.

Response selection

The response selection is performed by a neural field receiving projections
from the output population of both transformations. As illustrated in Figure
6.3, and already described at length in Chapter 3 and applied in Chapter 4, the
competition is known to arise naturally from recurrent network connectivity,
producing a sort of winner-take-all operation (Erlhagen & Schöner, 2002). When
two inputs of a neural field are separated in neural space, they compete, and
the input with the highest intensity wins the selection process. The cost of this
competition is a longer convergence time with respect to the case where two close
inputs cooperate. In this model, since the output strength of both streams are
asymmetrically balanced, the correct response is always selected by the network.
The network also receives a go signal by means of its modulatory input. Prior
to the presentation of the target posture, hSel(t) = −hGo � 0 so that the neural
field is completely inactive. When the target posture is presented, the go signal
goes to zero, i.e., hSel(t) = 0, and the selection process begins. The network
response is read-out using the population vector (Equ. (3.11)), which directly
represents the arm posture in the frame of reference of the imitator.

6.4 Results

The two experiments described in Section 6.2 were simulated. The demon-
strator’s arm and body postures, were systematically varied across each trial
during both experiments. The simulation parameters can be found in Appendix
B.2. Moreover, in experimental conditions involving the use of the left arm, the
subnetwork corresponding to the right arm was not considered, and vice versa.

6.4.1 Reaction Times and Accuracy

The mean reaction times and the errors resulting from the transformations
were measured for both experiments described in Section 6.2. Reaction times
were defined as the time when the response energy E(t) given by Equ. (3.14)
of the selection network reached a given threshold, whereas the transforma-
tion errors was defined as the angular distance between the population vector
response �p(t) after network convergence, and the correct target position. More-
over, since the dynamics of arm movements is not modeled, reaction times should
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according to the amount of postural change ΔθD.

be considered to be times of movement initiation rather than times of movement
completion.

As reported in Figure 6.5a, in both experiments, the average reaction time of
the system in anatomical conditions was systematically longer than during the
spatial task. Indeed, the former transformation requires more computations. In
addition, increasing the inhibition Δh of the irrelevant transformation produced
a slight increase in average reaction times, which was not really significant.
Nevertheless, this modulation had a clear effect on the transformation errors (see
Fig. 6.5b). Indeed, a weak inhibition produces a stronger competition between
the parallel transformations, which results in larger errors. In Experiment 2, the
amplitude of the postural change ΔθD was different across trials. The reaction
times dependency on this experimental variable in the baseline conditions is
shown in Figure 6.5c. For small postural changes, reaction times were longer,
but then decreased for larger ΔθD. This effect is caused by the center-surround
recurrence in the neural dynamics, resulting in longer convergence times when
moving from one attractor state to another, which is sufficiently close.

6.4.2 Interference Patterns

The interference patterns resulting from the competition between the two
transformations are now described. Only the conditions expected to show max-
imum interferences are considered, i.e., where the inhibitory modulation Δh

is minimal. The influence of the amount of this inhibition will be described
later in Section 6.4.3. The reaction times and transformation errors were con-
sidered relative to the baseline conditions. They are respectively defined by
ΔRTΔh = RTΔh − RTΔh0 , and ΔErrΔh = ErrΔh − ErrΔh0 , where RTΔh and
ErrΔh correspond respectively to the reaction times and errors measured for a
given Δh. Δh0 corresponds to the inhibitory term in the baseline conditions.

In Figure 6.6, data from Experiment 1 are given according to the discrep-
ancy D between the responses of the anatomical on one hand, and the spatial
transformation on the other hand. First, since the processing time of the spatial
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Figure 6.6: Results of Experiment 1: Reaction times and transformation errors
relative to the baseline condition are shown.

transformation is shorter, it interferes earlier with the anatomical transforma-
tion, and conversely. As an effect, the strength of the interferences on reaction
times were globally higher in anatomical conditions. Next, the reaction times
increased with the discrepancy between the responses, whereas transformation
errors behaved slightly differently. The errors did also increase with the discrep-
ancy, but only within a small range. For outermost distances, they decreased
until approximately zero. This effect is the result of the averaging of close
responses on the neural field.

Similar effects were observed in Experiment 2 (see Figure 6.7), i.e., the in-
terference patterns were globally more important under anatomical conditions
and the error patterns also depended on the discrepancy between the responses.
Further, the interference patterns on reaction times exhibited a combination of
the effects of both the discrepancy D between the responses and the amount
ΔθD of arm postural change that were shown earlier in Figures 6.5c and 6.6.
In conditions close to ideal congruency between the transformations, a general
facilitatory effect was primarily produced which was even stronger for mid-range
distances. In addition, an interaction between both variables on reaction times
was observed. It produced a small shift of the interference pattern relative to
the discrepancy D, which depended on ΔθD. In anatomical conditions, when
the response of the spatial transformation is in the course of the anatomical
transformation, the facilitory effect is strengthened, whereas when the former
is located at a distance, it is weakened. Since this dependency between the
responses is primarily caused by the difference in processing times, its effect is
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Figure 6.7: Results of Experiment 2: Reaction times relative to the baseline condi-
tion. On top of each plot, examples of experimental conditions are shown. In each
case, the largest arrow corresponds to the response of the relevant transformation.
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Figure 6.9: Effect of the inhibitory modulation of the irrelevant transformation on
the amplitude of the interference patterns.

reversed in spatial conditions. Finally, because the errors were measured after
network convergence, they were not different from those reported in Experiment
1 (see Figure 6.8).

6.4.3 Effects of Inhibitory Modulation

As mentioned in Section 6.4.2, the amount of the inhibition Δh is expected
to have a modulatory effect on the interference patterns. Thus, the interference
patterns of the condition where the least inhibition was applied, was used as a
basis for fitting the patterns observed in the other cases. For each amount of
inhibition Δh, the factor λΔh which minimizes

λΔh = min
λ

(λΔRTΔhmin − ΔRTΔh)2 (6.7)

was calculated. ΔRTΔh, which was already defined in Section 6.4.2 , corre-
sponds to the relative reaction times when the modulatory term has value Δh.
The same fitting procedure was also calculated for the network response errors.
The results, depicted in Figure 6.9, show that the strength of the interference
patterns decreased almost linearly with increasing Δh. As have been expected,
the more irrelevant transformation is inhibited, the less interferences (either
positive or negative) are observed.
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6.5 Discussion

In this chapter, a biologically-inspired neural model addressing the problem
of transformations across frames of reference in a posture imitation task has
been presented. This modeling work is based on the hypothesis that such an
imitation process is mediated by two concurrent transformations, correspond-
ing to the spatial and the anatomical imitative strategies (Brass et al., 2000;
Bertenthal et al., 2006; Chiavarino et al., 2007). These strategies may have
evolved separately for different specific uses. The former may result from early
visuo-motor development where the mapping to own hand would have been
extended to be responsive to any hand (Piaget, 1978). Since the observation
of one’s own hands is strictly experienced in viewer-centered coordinates, the
mapping between the executed movements and the observed consequences cor-
responds to pure spatial associations. Differently from the spatial strategy, the
anatomical strategy may be an after effect of the mental development of a body
schema which respects strictly body configurations (Gallagher, 2000). By exten-
sion, this system would strengthen the anatomical mapping between the sides
of observed people and of self.

Further, an experimental paradigm has also been designed, which allows
to measure the interference patterns produced by the interaction between the
anatomical on one hand, and the spatial imitative strategy on the other hand.
In addition, separate instances of the pair of transformations are assumed to
be responsible for the control of each side of the body. Since the described
experiments did not involve the use of both arms simultaneously, this latter
hypothesis does not rule out the fact that the processes of each arm may be
coupled and located within a single brain region (Arbib et al., 2000; Koski et
al., 2003). As such, the present results provide predictions of real behavioral
responses.

Similar to other works which applied the Dynamic Field approach (Erlhagen
& Schöner, 2002), this work goes beyond usual binary models often proposed
in experimental psychology (Zhang et al., 1999), by modeling continuous stim-
ulus variables and responses. In addition, this approach is of high biological
significance. Neurophysiological studies have shown that, in the superior tem-
poral sulcus, body and arm postures are encoded into neural populations where
each neuron exhibits tuning to a specific posture (Ashbridge et al., 2000). Sim-
ilarly distributed representations encoding different modalities have also been
reported in many other brain areas such as the motor, the premotor and the
parietal cortex and the cerebellum (Georgopoulos, 1996; Cisek & Kalaska, 2005;
Roitman, Pasalar, Johnson, & Ebner, 2005; Aflalo & Graziano, 2006a). More-
over, neural correlates of decisional processes within such representations have
also been reported in the premotor cortex (Cisek & Kalaska, 2005). Together,
these findings strengthen this approach by grounding it on a strong biological
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basis.

Behavioral studies on imitation report greater interferences during tasks
where the spatial transformation is irrelevant, as compared to tasks where
anatomical imitation has to be avoided (Brass et al., 2000; Heyes & Ray, 2004;
Bertenthal et al., 2006; Chiavarino et al., 2007). This modeling work supports
this observation, but explains it in terms of the longer processing time required
by the anatomical imitative strategy, which needs to process an additional vari-
able. Usual accounts for the greater influence of the spatial transformation
consider primarily a stronger linkage with the decisional process (Zhang et al.,
1999; Brass et al., 2000; Koski et al., 2003; Bertenthal et al., 2006). Although
both hypotheses are compatible, one may be interested in determining their
respective influence, which would need more investigations.

This work also showed that combining transformations can produce inter-
ferences. One may wonder why the nervous system would use a combination of
two strategies for solving imitation tasks since they produce interferences. An
answer may be given with respect to the reported simulations which show that,
in specific conditions, their interaction result in positive effects. For instance,
when the imitator and the demonstrator are face to face, mirror imitation is
faster, whereas anatomical imitation is more effective when the imitator looks
at the back of the demonstrator. From this, an alternative hypothesis can be
proposed, which may explain that, in unconstrained conditions and when people
are facing each other, mirror imitation is the most usual strategy for copying
meaningless gestures (Bekkering et al., 2000). Rather than simply assuming
that mirror imitation has a stronger influence on the selection process (Koski et
al., 2003; Heyes & Ray, 2004; Bertenthal et al., 2006), this work suggests that
this strategy is the one which exhibits the maximal congruency between the
concurrent transformations. Additional neurophysiological evidence supporting
this hypothesis can be found in an fMRI study showing that some of the brain
areas activated during the imitation of finger movements are more active during
specular than during anatomical imitation (Koski et al., 2003). In this experi-
ment, the authors did not consider the hypothesis that an anatomical mapping
could exist between ipsilateral hands. The mirror condition which they showed
to produce higher brain activation, corresponds in this study to a condition
where the responses of the parallel strategies are perfectly congruent. Since
this case is effectively the one in which the model produces responses with the
highest energy, the nervous system may hence be naturally biased toward this
strategy.

Behavioral experiments on imitation often involve a binary selection process,
which consists of responding to a stimulus with either the index or middle finger,
or with either the left or right arm, to state two examples (Brass et al., 2000;
Heyes & Ray, 2004; Bertenthal et al., 2006). Here, the suggested experimental
paradigm did not requested such an effector selection process. It rather asked for
a specific response in a continuous space. This difference could explain why the
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simulation results are not completely in concordance with the data of an exper-
imental study addressing the effects of spatial compatibility in imitation, which
used similar body postures as stimuli (Heyes & Ray, 2004). Thus, future devel-
opments of the model should address the problem of effector selection. Finally,
this work focused on the imitation of static postures, whereas in real conditions,
imitative tasks are often performed in a dynamic environment. Since the model
does not take movement velocity into account, future work should also aim at
integrating the sensitivity to this property into neural models. Nevertheless, as
suggested by another behavioral study by Stürmer et al. (2000), imitation of
postures and movements may also be processed separately, strengthening the
predictions of this model concerned with the imitation of body postures.
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Summary

This chapter presented a neural model which evaluates two possible forms
of transformations across frames of reference in the context of an interference
paradigm. An experimental setup has been proposed in order to test the com-
putational hypotheses developed here on real human subjects. Like the neural
models proposed in Chapter 4, interference produced by competitive interactions
between contradictory inputs affect the reaction times of movement execution.
In contrast to those models, the model presented here neither explicitly men-
tioned nor addressed the issues related to shared representations. This model
considers only an input-output sensorimotor mapping of the observed move-
ments to a motor representation; doing otherwise would have required a much
more complex network capable of simultaneously integrating the representation
of others’ movements with those of the imitator, while still being aware of the
ownership of each sensory input. As discussed in Chapter 2, humans are capa-
ble of discriminating between self and others’ actions; this capability requires
additional neural mechanisms aside from those presented here. Nevertheless,
the absence of such mechanisms in this model would certainly have only small
repercussions on the presented behavioral results. Indeed, since imitation was
the aim of the task, the movements to be executed are, by definition, always
congruent with those observed. Stronger interference would have been reported
only if the movements were to be different or incongruent (Jeannerod, 2003;
Kilner et al., 2003).

In order to address the issue of discrimination within shared representations,
a neural model based on current knowledge related to the monitoring of self ver-
sus others movements will be presented in Chapter 8. But before addressing the
cortical pathways involved in this cognitive function, the next chapter presents
a neural field model capable of discriminating between self-generated and ex-
ternally produced inputs. The model consists of an extension of the continuous
attractor neural network models described in Section 3.2.2. The combination of
the capacity to integrate velocity signals and the sensitivity to the speed of the
external inputs allows a neural field to select the input related to self-generated
movements.
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Chapter 7

Motion Integration,

Motion Sensitivity,

Sensory Prediction and

Sensory Discrimination

The study presented in this chapter was adapted from
the work which has been published in:

Sauser, E. L. and Billard, A. G.. Dynamic updating of distributed neural
representations using forward models. Biological Cybernetics. 95(6):567-
588.

Shared representations are often thought to be responsible for representing
motor execution patterns associated with both one’s own will as well as

observed actions performed by other individuals. This substrate, while providing
a fundamental neural basis for the study of the processes mediating imitation,
raises several questions. One concerns the issue of what happens in these shared
representations when the execution of a movement is done simultaneously with
the observation of a movement performed by another individual. In particular,
what happens when these two actions are different?

Chapter 4 presented evidence demonstrating interference resulting from con-
flicts within shared representations when the movement to be executed was dif-
ferent from that indicated by the triggering movement stimulus. However, in
order to succeed in this task, the strength of the internal representation of one’s
own choice was explicitly set to be greater than that of the interfering external
cue. This implicitly implied that the model must know which input, among
those entering the shared representations, corresponds to its own choice. This
worked because there was no ambiguity as to which visual and motor signals
belonged to the model. Nevertheless, in ambiguous situations, such as those
illustrated in Figure 2.3 of Chapter 2, one must be capable of distinguishing
which of the visual cues is controlled by one’s own will. Humans are capable of
discriminating between actions that are self-generated and those performed by
other individuals. The key processing components which have been suggested
to be involved in this ability are a forward model of movement execution and
a comparator (Decety & Sommerville, 2003; Jeannerod, 2003). The forward
model uses motor efference copies in order to predict the consequence of motor
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acts, while the latter compares this prediction with actual sensory consequences.
A more or less perfect matching then indicates that the perceived movements
may effectively be self-generated.

In order to provide a plausible neural mechanism underlying this human
ability, this chapter presents an extension of neural field models capable of re-
alizing this operation of discrimination. This model is capable of performing
different but related computations, which may allow velocity integration, ve-
locity discrimination and motor imagery. All of these processes imply complex
interactions between sensory inputs and the network involved in their cortical
representation. In contrast to the previous modeling studies presented here,
these interactions require continuously changing sensory inputs which need to
be dynamically integrated into the internal neural representation so that the
representation can continuously, quickly and accurately be kept up to date.
These two issues are reviewed in this chapter, followed by the description of the
extension as applied to the classical architecture of neural fields. Several exper-
iments are reported; these demonstrate how the model can be involved in the
cognitive processes responsible for velocity integration, velocity discrimination
and motor imagery. The neurophysiological and behavioral implications raised
by this model are discussed in the light of the simulation results.

7.1 Introduction

Two important issues are developed in this modeling study. The first point
concerns the dynamics of the interactions between external stimuli and a neural
field, and more precisely in the case where stimuli are moving along the neural
representation. Indeed, apart from purely abstract theoretical works and a few
applied to the modeling of biological systems (Zhang, 1996; Mineiro & Zipser,
1998; Giese, 2000; Xie et al., 2002), the use of such networks in practical neu-
robiological modeling comes along with the assumption of quasi-static neural
dynamics. It means that the time scale of the motion of the external inputs is
much larger than that of the network. Since the dynamics of neural fields are, by
definition, strongly influenced by the recurrent connectivity, the reaction time to
a changing stimulus is thus higher than that of a single neuron (Panzeri, Rolls,
Battaglia, & Lavis, 2001). Therefore, when a quasi-static network dynamics is
considered, the time scale at which the inputs are updated is set to a very large
value. Nevertheless, the comparison of these network implementations with real
biological systems does not usually lead to biased interpretations since their per-
formance is often considered in relatively slow tasks. However, when dealing,
for example, with precise and fast movements like catching a ball or smooth eye
pursuit, the internal representations should be updated very quickly, and even
in advance, so that the outcome of self-generated movements could be predicted
accurately (Miall & Wolpert, 1996; Wolpert & Kawato, 1998). An influential
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theory related to motor control suggests that the brain may use forward models
in order to better control movements. The key argument in this direction is
that, in humans, a closed-loop control system alone would be relatively inac-
curate since the time needed for sending motor commands and then receiving
the resulting sensory feedback is quite long (Miall & Wolpert, 1996; Wolpert &
Kawato, 1998; Miall & Reckess, 2002). For instance, during eye-tracking of a
self-moved target experiment, it has been shown that when a subject actively
moves a target, the presence of the movement sensory feedback is not necessary
to achieve almost zero latency, whereas motor efference copies are fundamental
to perform this task (Vercher et al., 1996). Furthermore, neurophysiological
data show that predictive neural responses can be found in the monkey visual,
parietal and frontal cortices, as well as in the cerebellum (Unema & Goldberg,
1997; Nakamura & Colby, 2002; Roitman et al., 2005), which suggests the pres-
ence of neural processes involved in the forward control of movements.

The second motivation concerns the neural mechanisms of self-awareness and
recognition. A current theory related to this problem considers two forms of cues
which may be at the origin of this human ability (Decety & Sommerville, 2003;
Haggard & Clarke, 2003; Jeannerod, 2003). When one has to recognize one’s
own limb, body cues, such as the spatial and visual attributes of the limb are
primarily used. More interestingly, in the case of ambiguous visual attributes,
it has been shown that one relies more on the so-called action or movement cues
such as the time course of the movement which includes its velocity and accel-
eration (Jeannerod, 2003). A plausible mechanism derived from motor control
theories has been suggested whereby an internal prediction of the consequences
of a motor act is compared with the real sensory outcome. Then, depending on
their similarity or discrepancy, the brain becomes capable of determining the
ownership of the observed movement (Decety & Sommerville, 2003). In addi-
tion, another related issue may be brought to light by considering the neural
substrates concerned with the perception of one’s own actions and those of oth-
ers. Current body of evidence suggests that a common neural substrate devoted
to both the recognition and production of movements exists in both humans and
monkeys (Iacoboni et al., 1999; Rizzolatti et al., 2001). A behavioral correlate of
this discovery, reported by several psychophysics experiments, is that observing
movements of others influences the quality of one’s own performance (Kilner
et al., 2003; Chaminade et al., 2005). The observation of such an interference
effect, while supporting the view of a common pathway for the transfer of visuo-
motor information, calls for an explanation as to how the same neural substrate
can both integrate multisensory information and, at the same time, determine
the ownership of the observed movements.

Despite the apparent differences between these two introduced topics, they
both share a common and fundamental requirement. They need a predictive
process, which allows, respectively, a) an almost instantaneous update of the
internal representations of the actual sensory state and b) the computation of
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sensory predictions to be compared with movement outcome. Indeed, the tim-
ing of neural updating of the internal sensory information is crucial in motor
control for the generation of accurate movements (Vercher & Gatthier, 1988;
Miall & Reckess, 2002). Similarly, a short time between movement execution
and the perception of its sensory feedback is also crucial for being able to feel
the agency of actions (Haggard & Clarke, 2003). The main interest that has
driven the work presented in this chapter, is effectively to show how a neural
field can integrate the efferent commands incoming from a forward model in
order to update its internal representation. As internal representations, the
present modeling is restricted to neural ensembles which encode simultaneously
a variable value and its first order time derivative. For instance, the position
and the velocity of either a visual stimulus in retinal space, or the hand location
in cartesian or joint space may be considered. Note that real populations of
neurons exhibiting this type of sensitivity have been reported in many brain ar-
eas, such as the motor, parietal, visual and temporal cortices and the cerebellum
(Hubel & Wiesel, 1977; Kettner et al., 1988; Ben Hamed, Duffy, & Pouget, 2003;
Jellema et al., 2004; Roitman et al., 2005; Aflalo & Graziano, 2007). The con-
tributions of this modeling study are threefold. First, a generalized framework
for the dynamic integration of velocity commands within continuous attractor
neural networks is developed. Secondly, a detailed stimulus encoding function,
which compensates for the internal dynamics of both neurons and the network is
considered. And thirdly, the properties and several applications resulting from
the proposed neural integration mechanism are described and analyzed. They
include a) a dynamically adjustable sensitivity to the velocity external inputs,
b) the ability to transfer information between cortical networks in an almost
instantaneous and predictive-like fashion, and c) the capacity to discriminate
stimuli according to their dynamical properties.

The remaining of this chapter is organized as follows. First, Section 7.2 intro-
duces the model core architecture and then describes the mechanisms underlying
the integration of velocity commands. Next, the precise profiles of stimulus en-
coding and the synaptic projections for transferring information across neural
populations are defined. Note that detailed mathematical calculations were left
in Appendix A.2. Further, in Section 7.3, an analysis of the network properties
is provided. Finally, in Section 7.4, the relationships between the properties of
the proposed model and biological data is considered in more details. In addi-
tion, its implications related to several important cognitive processes in terms
of neural mechanisms are provided.
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7.2 Neural Model

7.2.1 Architecture

First of all, similarly to Chapter 5, since the work described here presents an
extension of classical neural field models, the majority of the equations governing
their dynamics and their inputs will be rewritten so that they could account for
the proposed technical modifications. First of all, instead of being sensitive to a
single neural variable �r ∈ Γ, the continuous attractor neural network developed
here is composed of a continuum of neurons preferentially tuned to a primary
variable �rA and a secondary variable �rB following a uniform distribution such
that �rA ∈ ΓA and �rB ∈ ΓB, respectively. As mentioned in the introduction, these
two neural parameter spaces are assumed to represent, respectively, a variable
value and its variation in time. For example, if a stimulus location is encoded in
the space ΓA, a neuron tuned to a specific �rB should fire preferentially when the
stimulus is moving in the direction given by that �rB. This hypothesis related
to a combined preferential tuning to both a variable value and its direction of
variation is primarily motivated by several neurophysiological studies showing
neurons exhibiting similar firing properties (Kettner et al., 1988; Fu, Flament,
Coltz, & Ebner, 1997; Jellema et al., 2004; Roitman et al., 2005). In addition
to the computational power that this type of combined neural representations
may provide to the brain (Salinas & Abbott, 1995; Pouget & Snyder, 2000), the
following analysis will show that it can also facilitate the updating of its internal
representation. For example, a neural network encoding both the position and
the instantaneous velocity of a moving target at a given time, should be capable
of predicting where the target should be in the near future.

The parameter spaces of the primary variable �rA which are considered here,
consist of a unidimensional and a two dimensional neural space (see Table 7.1).
Moreover, in order to avoid boundary effects, periodic spaces are assumed.
Therefore, the considered domains are, respectively, a ring and its two dimen-
sional analog, a torus. Despite of the discrete nature of �rB in the case of the ring
attractor, the neural ensemble follows a continuous attractor network dynam-
ics where the time evolution of the neurons’ membrane potential u(�rA, �rB, t)

Table 7.1: Definition domains of neural preferential tuning considered in this chapter.
Note that except in the case where it is mandatory, the index indicating the dimension
of the parameter space is omitted.

Ring, N = 1 Torus, N = 2

�rA ∈ ΓA
1 =

{
�rA ∈ R

2
∣∣ ‖�rA ‖ = 1

}
ΓA

2 = ΓA
1 × ΓA

1

�rB ∈ ΓB
1 = {−1, 1} ΓB

2 =
{
�rB ∈ R

2
∣∣ ‖�rB ‖ = 1

}
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Figure 7.1: Illustration of the model architecture and weight kernels for both the ring
(top) and the torus attractor spaces (bottom). Each sub-layer encoding a variable in
the neural space defined on �rA, has an preferred movement direction �rB which is the
result of the asymmetric self-connectivity. This weight kernel is shown for different
values of �rB. It is superimposed on the arrows denoting the synaptic projections across
the sub-layers.
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Figure 7.2: Illustration of the model architecture. Each sub-layer encoding a variable
in the neural space defined on �rA ∈ ΓA, has a preferred movement direction �rB ∈ ΓB

which is the result of the asymmetric self-connectivity. On top, the center arrows
indicate the preferred movement direction of the sub-layers. If considered alone, each
of them would display a traveling activity blob in its preferred movement direction,
as shown by the trace of the activity blobs on the neural surface. At the bottom, it is
illustrated how each sub-layer projects its activity onto all sub-layers using the same
weight profile.

satisfies

τ u̇(�rA, �rB, t) = −u(�rA, �rB, t) + h(�rB, t) + x(�rA, �rB, t) +‹ [
WR(�rA′ , �rA) − λ∇WR(�rA′ , �rA) · �rB′

]
f
(
u(�rA′ , �rB′ , t)

)
d�rA′ d�rB′ (7.1)

The transfer function f(u) is the linear threshold function max(0, u) and τ ∈ R
∗
+

is the membrane time constant. The network receives external inputs, which
were separated into two distinct forms. x(�rA, �rB, t) is defined as the stimulus
input whereas h(�rB, t) as the background input. As can be noticed. h(�rB, t)
is, by definition, homogeneous across the group of neurons sharing the same
preferential tuning to the variable �rB. From now on, these groups of neurons
will be designated as sub-layers.

The network is fully and recurrently connected by means of synaptic weights
which can be decomposed into two parts: a center-surround Gaussian-like1,
translation-invariant and symmetric component WR(�rA′ , �rA) and an asymmet-

1The exact shape of W R is not crucial as long as it can allow the network to sustain an
activity packet on its neural surface (Amari, 1977). Nevertheless, in the simulations that will
be reported further in this chapter, the profile of these weights complies with that already
defined in Chapter 3 by Equ. (3.8).
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ric term −λ∇W (�rA′ , �rA) · �rB′ where ∇ corresponds to the gradient operator
along �rA. λ ∈ R

∗
+ is a constant scaling factor. The first term consists of a

convolution kernel which links the neurons along the neural fundamental vari-
able �rA, while the second term links them along �rB. These convolution weights
and the network architecture are illustrated in Figures 7.1 and 7.2. As will
be described in more details in Section 7.2.2, this connectivity is the core of
the system ability to integrate velocity commands and to update its internal
representation. The idea behind this recurrent synaptic profile comes from the
asymmetric connectivity which allows traveling waves to emerge on the surface
of neural fields (See Section 3.2.2). Then by connecting together neural fields
having different intrinsic directions of motion, and by breaking the balance of
excitation between each field, a traveling pulse solution may then develop in the
intrinsic direction given by the strongest field.

Examples of activity packets or attractor bumps produced by this type of
neural dynamics are illustrated in Figure 7.2. Since this network possesses two
internal variables, the population vector �p(t) has been modified with respect
to that already defined in Equ. (3.11). In the present situation, the estimate
�p(t) ∈ ΓA of the variable value encoded along �rA is given by

�p(t) =

‚
f
(
u(�rA, �rB, t)

)
�rA d�rA d�rB‚

f
(
u(�rA, �rB, t)

)
d�rA d�rB

(7.2)

An estimate of the variable encoded in ΓB may be envisaged similarly. However,
since this space is an extension of the primary space ΓA and since it will be
shown to be primarily used for integration purposes, its explicit definition is not
necessary. In the next section, the description of the role of that dimension in
the neural mechanism which can update the network internal representation is
given.

7.2.2 Control of the Intrinsic Dynamics

This section first describes how external commands, such as those which can
be produced by forward models, may drive the network internal dynamics so
that the neural representation could be updated accordingly. Afterwards, the
boundaries in which this velocity integration remains valid will be determined.

First of all, this work starts with the hypothesis that the neural field is al-
ready representing and sustaining information and that no stimulus input is
presented, i.e., x(�rA, �rB, t) = 0. As already suggested by Xie et al. (2002) who
proposed a neural architecture similar to that presented here, the key element
for updating the network representation consists of exciting asymmetrically each
sub-layers. By activating most that which is preferentially tuned to the desired
direction of variation of the internal variable, the network should drive its inter-
nal representation correctly. Thus, let the background input h(�rB, t) be defined
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as

h(�rB, t) = h0 [1 + �hd
0(t) · �rB] (7.3)

where h0 > 0 corresponds to a constant excitation level, and �hd
0(t) is a directional

component which allows to break the network symmetry when different from
zero (see Figure 7.3a). Indeed, when referring to Equ. (7.1), it can be noticed
that a background input which is homogeneous over all sub-layers, i.e., �hd

0 = �0,
leads the integral along �rB of the asymmetric component of the recurrent weights
to disappear, i.e.,

‹
λ∇WR(�rA′ , �rA) · �rB′ f

(
u(�rA′ , �rB′ , t)

)
d�rA′ d�rB′ = 0 (7.4)

In this situation, the system settles by symmetry into a constant state along
�rB, and produces a marginally stable bump solution. Thus, this network be-
comes equivalent to a typical continuous attractor neural network which does
not possess any asymmetric connectivity. Consequently, in order to break this
symmetry, an input �hd

0 �= �0 has to be applied. It will favor higher excitation
levels for the sub-layers having a preferred direction �rB close to that indicated
by �hd

0.
Now, if a single sub-layer is first considered, it has been shown to develop a

traveling activity bump symmetric in shape having a constant velocity. More-
over, this constant velocity has been proved to depend only on the ratio between
the strength of the asymmetric component of the weights and the time constant
of the neuron, i.e., λ/τ (Zhang, 1996). By introducing a strong coupling be-
tween the sub-layers having opposite direction preferences, each of them will try
to drive the global network response toward its preferred direction of motion.
This form of push-pull mechanism is then regulated by the respective balance
of excitation across the sub-layers (Xie et al., 2002). In the present model, this
effect is controlled by the asymmetric component �hd

0 of background input.
Further, when the internal representation is updated accurately according to

a desired velocity �v�(t), the population vector �p(t) of the network has to respect
the following equation:

�̇p(t) = �v�(t) (7.5)

Detailed calculations, provided in Appendix A.2 to lighten the text, show that
near the equilibrium state, i.e., �hd

0 = �0, the relationship between the variation
of the population vector and the asymmetric background input can be approx-
imated linearly such that

�̇p(t) ≈ λ

τ
γ �hd

0(t) (7.6)

where �hd
0(t) is small. γ corresponds to the slope of the linear approximation
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which uniquely depends on the parameters of the recurrent weights2. In addi-
tion, since the update of the neural representation is made possible by modu-
lating the influence of the sub-layers, the maximal velocity that the model may
integrate is bounded by that of a single sub-layer, i.e λ/τ . Thus, the estimate
of the internal velocity of the network may be rewritten as

�̇p(t) ≈ λ

τ
min

(
γ �hd

0(t),
�hd

0(t)

‖�hd
0(t)‖

)
(7.7)

Next, in order to find the correct expression of the background input to be
applied to the network given a desired velocity �v�(t), Eqs. (7.5) and (7.7) can
be substituted into Equ. (7.3), which gives

h(�rB, t) = h0

[
1 +

τ

λγ
�v�(t) · �rB

]
‖�v�(t)‖ � λ

τ
(7.8)

As a consequence, the internal representation of the neural field can be driven
by an external command which indicates in which direction as well as at which
velocity its update should be performed. This dynamical process thus trans-
forms the continuous and marginal attractor state of the neural field defined on
the neural space ΓA, into a limit cycle having a constant velocity. This network
is said to possess an intrinsic velocity that corresponds to the velocity at which
a self-sustained activation pattern would move in absence of a stimulus input.
Indeed, when a stimulus input is fed to the network, its response is affected and
may not exhibit a traveling motion characteristic anymore. Before addressing
this issue experimentally in Section 7.3.3, stimulus inputs are first defined in
order to drive the network dynamics toward their own. That is, if an input is
moving at given speed and direction, the dynamics of the neural field should
not produce interferences but it should rather resonate with its input.

7.2.3 Stimulus Encoding

This section describes the profile a stimulus input should take in order to
drive the network dynamics toward its own dynamics. Two possible forms are
proposed, a non-linear and a linear one. The non-linear input profile is described
first, since its derivation from the results obtained above is the most straightfor-
ward. Next, by a linear approximation, a linear form is developed. The interest
in this second type of input is that it makes possible to derive the profile that
synaptic projections between two neural populations should have in order to
transmit both the positional and velocity-dependent information conveyed by
the neural fields described here.

A stimulus located at �s(t) in the neural space ΓA is considered. Moreover, it
is assumed to move in phase with the network intrinsic velocity, i.e., �̇s(t) = �v�(t).

2Except in rare specific cases, γ has to be found numerically.
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Figure 7.3: Examples of external inputs where the same representation as in Figure
7.2 is used. The color code on the bottom right of the figure indicates the corresponding
preferred movement direction of each sub-layer. a) The background input h(�rB, t)
(Equ. (7.3)), b) the stimulus input x(�rA, �rB, t) (Equ. (7.9)) and c) the linear form of
that stimulus input (Equ. (7.12)) are shown. The arrow in the middle of the figures
denotes the intrinsic velocity of the network resulting when the corresponding input
is applied.

The input profile x(�rA, �rB, t) associated to this stimulus is given by

x(�rA, �rB, t) = h1

[
G(�rA, �s(t), σs

)− τ �̇s(t) · ∇G(�rA, �s(t), σs

)]
[
1 +

τ

λγ
�̇s(t) · �rB

]
‖�̇s(t)‖ � λ

τ
(7.9)

where h1 > 0 corresponds to the stimulus amplitude and G to the function gen-
erating a gaussian profiles as defined in Equ. (3.7). σs indicates the breadth of
the input gaussian which is centered on the stimulus location �s(t). An illustra-
tion of the resulting shape of such a stimulus input is shown in Figure 7.3b. The
second term of the first factor is meant to compensate for the integration time
of the neurons. As a consequence, the activity profile of the network response
to this input is unaffected by the motion of the stimulus. It stays symmetric,
as if it was static in the neural medium.

Finally, the second factor is responsible for driving the push-pull mechanism
of the neural field. Indeed, by comparing Equ. (7.9) with Equ. (7.8), it can
be noticed that this second factor is similar to the input necessary to set the
intrinsic dynamics to the neural field to a given desired velocity. Therefore, by
means of this constant modulation along �rB, the asymmetric recurrent connec-
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tivity will help the neural field track the moving stimulus. Further, since the
asymmetry of the stimulus input is proportional to its speed, a directional input
factor �hd

1 is introduced. It has a similar role to that of the background input
and is given by

�hd
1(t) =

τ

λγ
�̇s(t) (7.10)

This relationship indicates how much the strength of the input asymmetry
should be so that the network can follow its speed accurately. Then, rewrit-
ing Equ. (7.9) gives

x(�rA, �rB, t) = h1

[
G(�rA, �s(t), σs

)− τ �̇s(t) · ∇G(�rA, �s(t), σs

)]
[
1 + �hd

1(t) · �rB
]

(7.11)

Since the asymmetric factor of the stimulus input is proportional to its velocity,
the use of either notation will be considered as equivalent in the further analysis
of the experiments. This will be applied to the variable defining the background
input as well. Again, the reader interested in a more detailed description of this
mathematical development is encouraged to refer to Appendix A.2.2.

Linear Encoding

As mentioned earlier, an alternative form of stimulus input can be defined
in order to avoid the non-linear multiplicative factor found in Equ. (7.9). This
multiplicative factor has been shown to be needed to drive the network dynamics
toward that of the stimulus input. In order to get rid of it, the idea is simply
to replace it with a linear term. It has to be constant along the stimulus space
ΓA, and asymmetric along ΓB. Detailed calculations given in Appendix A.2.2
show that the following input form approximates Equ. (7.9). It is given by

x(�rA, �rB, t) = h1

[
G(�rA, �s(t), σs

)− τ �̇s(t) · ∇G(�rA, �s(t), σs

)
+

η�hd
1 · �rB

]
(7.12)

where η is a constant which depends on both the network recurrent weights WR

and on the profile G of the input. This form of linear encoding is particularly
interesting for transmitting information across populations. Indeed, as will be
described next, the positional and velocity-related information conveyed by a
neural field can also be transferred to another field by means of strictly linear
synaptic projections appropriately chosen.
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7.2.4 Information Transmission across Neural Fields

In large scale neural networks, such as those trying to model the neural
pathways responsible for cortical functions, several instances of the neural field
model presented here have to be interconnected. The synaptic projections W ab

from a neural field A to another one B are defined so that the input xb(�rA, �rB, t)
of population B is given by

xb(�rA, �rB, t) =
‹

W ab(�rA′ , �rB′ , �rA, �rB)f
(
ua(�rA′ , �rB′ , t)

)
d�rA′ d�rB′ (7.13)

The aim of this section is to provide the profile of these synaptic weights so
that the result of their projections are equivalent to the stimulus input form
given in Equ. 7.12. As a consequence, the information conveyed by the source
population A would be completely transferred into B such that �p b(t) = �p a(t)
and �̇p b(t) = �̇p a(t).

In classical neural field implementation, information is usually transmitted
using a weight kernel having a symmetric and center-surround shape. However,
as shown previously, the ability of a neural field for velocity integration is the
result of an asymmetric coupling across the network sub-layers. Therefore, a
similar technique to that described in the context of the network dynamics (Equ.
(7.1)) is applied here. It can be shown (See Appendix A.2.2) that the following
projection weights

W ab(�rA′ , �rB′ , �rA, �rB) =
[
W t(�rA′ , �rA) − λ∇W t(�rA′ , �rA) · �rB′ +

μab �rB · �rB′ ′
]

(7.14)

produce the desired effect. W t could be any symmetric and center-surround
convolution kernel strictly defined on the neural space ΓA. The last term μab �rB ·
�rB′ , where μab is a constant depending on the recurrent weights and on the profile
of the stimulus input, is the analogue of the last term found in Equ. (7.12).
Consequently, population A can drive the dynamics of population B according
to its own dynamics.

7.3 Experiments and Results

In the following section, several experiments performed using the previously
described model are presented. Sections 7.3.1 and 7.3.2 show numerical simu-
lations aiming at illustrating the relevance of the mathematical developments.
The ability of the model to integrate velocity commands and its responses to
stimulus inputs and synaptic projections across multiple instances of the net-
works are also described. Further, in Section 7.3.3, the model is shown to be
capable of reproducing neurophysiological data related to the preferential tuning

193



of neurons in the visual cortex to stimulus velocity (Orban et al., 1986). Finally,
two additional simulation results are reported. They address the mechanisms
that the present approach suggests to be related to the human abilities for
motor imagery and sensory discrimination, respectively. The first experiment
describes how the excitation level of the network may unbind it from its sensory
influences. The second one considers a neural field receiving two contradictory
and ambiguous sensory inputs which has to select the input corresponding best
to its own internal dynamics.

7.3.1 Dynamic Velocity Integration

In the hippocampal formation of the rat, the so-called head-direction cells
have been shown to code for the current heading direction of the animal. In
addition, these neurons display a rapid updating of their representation, which
has been suggested to be a response to motor efference copies or vestibular inputs
(Sharp, Blair, & Cho, 2001; Taube & Bassett, 2003). Furthermore, in other
brain regions, a similar rapid and predictive update of the neural representations
encoding for different sensory states have also been reported (Schwartz & Moran,
1999; Roitman et al., 2005).

Here, the proposed model is shown to be capable of updating its internal
representation according to the external commands �v�(t) fed to the network
by means of its background input h(�rB, t). The simulation parameters that
were used in each of the following experiments are summarized in Appendix
B.3. Figure 7.4 shows the measured velocity response �̇p(t) of the neural field
as a function of ‖�hd

0‖. Each point on the graph was obtained in a different
trial with a different value for ‖�hd

0‖. The approximation, given by Equ. (7.7),
is also displayed on the same graph. In the one dimensional case, it can be
noticed that for a sufficiently strong asymmetric input, the network can reach the
maximum velocity given by λ/τ . However, in the two dimensional case, it can be
seen that the system only tends toward that maximum asymptotically. Indeed,
in the former case, the stronger sub-layer is capable of completely inhibiting
its opposite and hence, it drives the whole network alone. In contrast, the
continuous nature of the direction preference in the latter case forbids a single
sub-layer to win against all the others. Nevertheless, for a relatively small
asymmetric component �hd

0, the theoretical approximation fits well the simulation
results. In Figures 7.5 and 7.6, some trajectories followed by the command �v�

are compared to the velocity response �̇p(t) of the network.

7.3.2 Transfer of Information across Neural Fields

This section shows how the network can integrate the information provided
by a stimulus input as well as by projections from another network. In addi-
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Figure 7.4: Network velocity response (dotted line) to different amplitudes of the
asymmetric background input drive ‖�hd

0‖, as displayed by a ring (left) and torus at-
tractor (right). The straight line corresponds to the approximation of the velocity
response (Equ. (7.3)).
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Figure 7.5: Velocity response �̇p(t) of a ring network to external commands �v�(t) pro-
vided through background input (Equ. (7.8)). Dotted and straight lines correspond,
respectively, to the desired velocity command �v�(t) and to the network velocity re-
sponse �̇p(t). As can be seen when a high velocity command is given, the network
saturates at its maximum velocity integration boundary given by λ/τ .
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Figure 7.6: Velocity response �̇p(t) of a torus network to external commands �v�(t).
Data are shown relative to the two principal axes of the network representation space
ΓA

2 given by the canonical base {�e1, �e2} ∈ ΓA
1 × ΓA

1 The same notation as in Figure
7.5 is used.
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tion, its performance will also be compared with that of an usual single-layered
continuous attractor neural network. For recall, its neural dynamics is governed
by

τ u̇(�r, t) = −u(�r, t) + x(�r, t) + h(t)˛
W (�r ′, �r) f(u(�r ′, t)) d�r ′ (7.15)

In comparison to Equ. (7.1), this equation corresponds to a network with a
reduced dimensionality. In this case, the stimulus and the background inputs
are, respectively, given by x(�r, t) = h1 G(�r,�s(t)) and h(t) = h0.

Transfer from Stimulus Input to Network Representation

In order to illustrate the validity of the mathematical development address-
ing the integration of stimulus inputs,the non-linear and the linear form of the
stimulus input (Eqs. (7.9) and (7.12), respectively) were separately applied to
the network. The background input amplitude h0 was set to zero. For different
stimulus speeds, the spatial lag between the effective stimulus spatial location
�s(ti) and the neural population vector �p(ti) at a given time ti was measured.
The results are plotted in Figure 7.7a and 7.7b. They show that, under both
conditions, the model outperforms the classical model. Indeed, below the max-
imum integration velocity given by λ/τ , the lag stays close to zero, whereas an
almost linear velocity-dependent lag is observed for the other model.

Transfer across Networks

Next, similar simulations were performed while the transfer of information
across the representations of two interconnected neural fields were considered
(See Eqs. (7.13) and (7.14)). Figure 7.7c shows the resulting lag measured
between the two neural populations. As expected, the lag effectively stays close
to zero as long as the velocity stays below the integration boundary λ/τ .

7.3.3 Dynamic Velocity Tuning

In the visual cortex, groups of neurons have been reported to be prefer-
entially tuned to the position and velocity of visual stimuli. This sensitivity
has further been suggested to take part in the mechanisms underlying human
ability for velocity discrimination (Goodwin & Henry, 1975; Cheng, Hasegawa,
Kadharbatcha, & Tanaka, 1994; Chey, Grossberg, & Mingolla, 1998; Mineiro
& Zipser, 1998). In this section, the behavior of the model tested against this
experimental paradigm is described. Prior to this experiment, the model was
expected to replicate this finding. Indeed, it has already been shown that a
single-layered neural field having a fixed asymmetric recurrent connectivity, can
exhibit a preferential tuning to a specific speed of input stimuli (Mineiro &
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Figure 7.7: This figure illustrates the positional lag at a given time ti between the
network representation �p(to) and a) a moving stimulus encoded using the non-linear
method (Equ. 7.9), b) encoded with the linear method (Equ. 7.12) and c) another
network which is driven by a moving stimulus (Equ. 7.13). In order to quantify
the amount of latency between these representations, the lag is given relative to the
breadth σs of the input shape G (See Appendix B.3). On top, a system schematic shows
which part of the network is considered in each case. Data is shown for different values
of the ratio λ/τ which corresponds to the maximum allowable integration velocity. As
can be seen, the lag is very low below this maximal value, but then grows almost
linearly with the input speed. Moreover, this figure also compares the developed
neural field model with classical continuous attractor network implementation (dotted
line). As can be noticed, such a model suffers from a lag which is almost linearly
related to the input speed.
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Figure 7.8: On top, the ring network mean energy relative to the speed of the input
stimulus is shown. Each plot corresponds to a different intrinsic network speed. Note
the shift in the preferential velocity tuning of the network with its intrinsic speed. At
the bottom, the same results are shown for a torus attractor. The black dot indicates
the network intrinsic speed. The brighter the plot is, the higher the energy.

Zipser, 1998). However an important advantage of the neural model described
here, is that the intrinsic velocity to which the neurons are sensitive, can be
changed dynamically. Indeed, by considering the changes in the network re-
sponse to a stimulus moving at different velocities, the model will be shown to
be capable of displaying a large range of preferential tuning by only varying the
asymmetry of the background input h(�rB, t). Indeed, given an intrinsic network
velocity �v�, a stimulus with a close speed will resonate or cooperate more with
the network than divergent ones. Since cooperative interactions in continuous
attractor neural network produce higher activation patterns than competitive
ones, the mean global firing rate of the neural field was chosen to be a good
measure of this resonance effect. The network response energy E(t), already
defined in Equ. (3.14), is redefined here in order to account for the second
variable. It is given by

E(t) =
‹

f
(
u(�rA, �rB, t)

)
d�rA d�rB (7.16)

Several simulation trials were performed while the model was given various
intrinsic velocities �v�. Then, a single stimulus which velocity was varied on a
large range of velocities and directions was fed to the network. The field energy
measured during each trial is reported in Figure 7.8. It can be seen that the
network effectively responds preferentially to stimuli having a similar velocity,
and that these tuning curves show a high similarity to those reported in the
visual cortex (See Figure 3.15a) (Orban et al., 1986; Cheng et al., 1994).
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Figure 7.9: Input space in which the network is mostly driven by the stimulus or the
background input is shown for different value of the ratio h0/h1. The straight lines
indicate the separations of the input velocity space between areas where the network
is mostly driven by the stimulus input (straight arrows), and where the background
input dominates (dashed arrows).

7.3.4 Neural Locking and Unlocking to External

Stimulus

The experiments described above were mostly performed while the mean
background input h0 was kept sufficiently small so that the influence of the re-
current connectivity was weak as compared to the strength of the stimulus input
h1. Indeed, the ratio h0/h1 is of critical importance on the network behavior. It
determines which of these two forms of inputs is driving the network. A small
value of this ratio corresponds to a predominance of the stimulus input, while
a larger one corresponds to a dominance of the network intrinsic dynamics.
Interestingly, the ability of this system to exhibit these two distinct operative
modes may be correlated to the brain processes of movement execution and
motor imagery, which are known to activate similarly several motor cortical
areas (Jeannerod & Decety, 1995; Porro et al., 1996; Rizzolatti et al., 2001;
Fogassi & Gallese, 2002). On one hand, during motor execution, it is important
for the neural representation of movements to keep track of the actual sensory
state such as proprioceptive information. The stimulus input must thus pre-
dominate. On the other hand, during motor imagery, the brain has to mentally
simulate movements which are not overtly produced, and consequently, it has
to avoid relying on proprioceptive feedback. In this case, the network intrinsic
dynamics has to dominate.
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In the neural model proposed here, when h1 
 h0, the network stays locked
to the input stimulus. However, when h0 
 h1, the intrinsic dynamics becomes
sufficiently strong to free itself from the influence of the stimulus input. In this
case, the network behaves strictly according to its background input. Figure 7.9
shows, for different values of the ratio h0/h1, the space in which the network
is mostly driven by either the stimulus or the background input. By mostly
driven by the stimulus input, it is meant that the network response �p(t) is
strongly dependent on the spatial location �s(t) of the stimulus. When the lag
between these two values is almost constant through time, it indicates that the
network is actually locked to that input. In contrast, an uncorrelated difference
between �p(t) and �s(t) rather shows that the network is only driven by its intrinsic
dynamics. The data shown in Figure 7.9 were obtained by first letting the
network and the stimulus evolve for a given and sufficiently long period of time.
Then, the lag between the stimulus location and that of the network response
was measured. If, for a given trial, the lag was less than twice the breadth of the
stimulus input σs, the network was considered as stimulus driven. Otherwise,
it was considered as driven by its intrinsic dynamics.

7.3.5 Sensory Discrimination

The last but not least simulation results concern the mechanisms of sensory
discrimination. The principal source of inspiration comes from a behavioral
experiment addressing the human ability to recognize one’s own hand while ob-
serving two hands, identical in terms of their visual attributes (See Figure 2.3)
(Van Den Bos & Jeannerod, 2002). One hand is actually that of the human
subject, and the other belongs to that of the experimenter. It was shown that
even when the two hands are moving in a similar fashion, the subjects can fairly
determine which hand is their own (Van Den Bos & Jeannerod, 2002). The cog-
nitive principle which has been suggested to allow this self-recognition ability,
is based on a forward model which takes motor efference copies as inputs and
then predicts the corresponding sensory consequences (Decety & Sommerville,
2003). A comparison between these predictions with actual sensory feedback
is then performed. A close match would further indicate that the observed
stimulus is controlled by the self, whereas a discrepancy would mean that it is
under an external influence. Neurophysiological data clearly suggest that this
discrimination process is partly grounded within brain regions containing shared
representations for both motor execution and visual recognition of movements
(Decety & Sommerville, 2003). This implies that some neural populations which
receive visual signals irrespective of their owner, i.e., the self or another indi-
vidual, should be capable of discriminating between self-generated motions and
those performed by others, even if these visual signals are ambiguous in terms
of their visual attributes.
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Figure 7.10: Network response during a velocity discrimination task. Each subplot
corresponds to a snapshot of the membrane potential u(�rA, �rB, t) of selected sub-
layers sorted according to their preferred movement direction. The surfaces enclosed
with the white dotted line indicate regions of neural space in which activity is above
zero, i.e., the neurons within these areas are actually firing. In the middle of each
sub-figure, the external input x(�rA, �rB, t) averaged over the preferred directions of
movement �rB are shown. a) Beginning of the discrimination task: Both the compatible
and the incompatible stimuli are at the same location in neural space. They are
indistinguishable. b) The stimuli, moving at different speeds, start to separate but
are not distinguishable on the network representation yet. c) The stimuli are clearly
disjointed and by means of its recurrent interactions, the network naturally selects the
stimulus which is the most compatible with its own intrinsic velocity.

This theoretical principle was applied to the model presented here. Two
external stimuli located, respectively, at �s c(t) and �s i(t) are fed to the network.
Since they are assumed to be ambiguous, their respective amplitude hc

1 and hi
1

as well as their initial location are considered identical. The indices c and i,
designate the stimulus compatible with the network intrinsic dynamics, and the
incompatible stimulus, respectively. The compatible stimulus must thus have a
velocity which is equivalent to that of the neural field, i.e., �hdc

1 = �hd
0 so that

�̇s c(t) ≈ �v�(t). In contrast, that of the incompatible stimulus is different. Sim-
ulation results are given in Figures 7.10 and 7.11. Figure 7.10 describes the
neural activity of the network at different time steps. It can be seen that when
the inputs are separated in the neural space ΓA, the network naturally selects
the input having a velocity corresponding best to its own intrinsic dynamics.
Additionally, Figure 7.11 shows the temporal dynamics of stimulus selection in
different cases. When the input speed is below the maximum intrinsic network
velocity (See Figures 7.11a and b), the selection is successful. However, when
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Figure 7.11: Illustration of the network response �p(t) when a stimulus compatible
with the intrinsic network velocity and an incompatible one are applied to the inputs
of the network. The positions of the compatible stimulus (light filled line), the incom-
patible stimulus (dotted line) and the network response (dark filled line) are shown
over time in several situations. a-c) As soon as the stimuli are sufficiently separated
in neural space, the network successfully selects the compatible stimulus. It can be
noticed that the trajectory of the internal representation �p(t) exhibits, initially, a de-
viation from the compatible stimulus trajectory. As described in Figure 7.10, this is
the result of the temporary overlap between the two stimuli representations on neural
space; the network thus cannot discriminate between the two. However, as soon as
the stimuli are sufficiently separated, the selection is performed. c) Since the speed of
the compatible stimulus is above the maximal network velocity, a constant lag can be
observed. d) In a similar out-of-boundaries situation, the network selects the wrong
input. Indeed, the input speed is here closer to that of the network.

above, the network may either lag behind the compatible stimulus or even select
the incompatible stimulus (See Figures 7.11c and d). Finally, Figure 7.12 sum-
marizes the range of speeds where the network successfully discriminates the
correct stimulus input. In the case of a right decision, the spatial lag between
the population vector �p(t) and the compatible stimulus location �sc is indicated
by a gray level. It can be noticed that the lag is almost zero when the com-
patible stimulus velocity lies within the allowable range of velocity integration.
Indeed, as described in Section 7.3.2, outside that range the lag increases with
the stimulus speed. Furthermore, note that the regions of false discrimination
are strictly located over the system integration boundary. Since in these cases,
the network can not update its internal representation accurately, it naturally
selects the input which is the closest to its actual intrinsic velocity. When the
velocity of the incompatible input is closer to the maximum integration velocity
of the network than that of the compatible input, the incompatible input be-
comes more compatible with the network than the compatible one, and hence
it gets naturally selected.

These results confirm that this model can account for the importance of
the precise timing between the prediction of the movement outcome and its
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Figure 7.12: This figure shows the range of compatible-incompatible stimulus ve-
locities leading the network to a false decision (triangular black regions). Moreover,
in the case of a correct decision, the figure also shows the lag measured between the
location �s c(t) of the compatible stimulus and the network response �p(t). The lag is
given relative to the breadth σs of the stimulus input. As can be seen, when the com-
patible stimulus speed is over the network integration limit, an increasing lag between
the input and the network response is observed.

associated sensory feedback (Haggard & Clarke, 2003). Indeed, this constraint
in the timing allows the model to select which of the stimuli is under self-control.
Consequently, this model may describe a plausible neural mechanism which can
contribute to this cognitive function. It also suggests how, within shared neural
representations, neural discrimination may be performed.

7.4 Discussion

This chapter presented a continuous attractor neural network model capable
of integrating velocity commands in order to update its internal representation.
In addition, adequate profiles of external inputs were defined such that these
inputs can drive the network toward their own dynamics. Further, the analysis
of the network dynamics revealed various interesting properties which may be
shared by several cortical brain regions. By considering current neurophysiolog-
ical data, the structure and mechanisms of this model may be found in various
brain areas, such as the cerebellum and the motor, visual and associative cor-
tices.

Related models addressing the problem of velocity integration have already
been described in the literature. The large majority of them considers, as bio-
logical background, the rat head direction system, its hippocampal places fields
and its abilities for path integration (Redish et al., 1996; Zhang, 1996; Xie et
al., 2002; Stringer et al., 2004). Although the biological plausibility of their
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implementation is still under debate, a series of models assumes the existence
of sigma-pi units, i.e., neurons performing both a sum and a product of their
inputs (Redish et al., 1996; Zhang, 1996; Stringer et al., 2004). In contrast, the
neural architecture described here avoids the use of such computational units.
It is nevertheless largely inspired from the computational principles described
by Zhang (1996) and the neural structure proposed by Xie et al. (2002). De-
spite this similarity, this work first considers explicitly the external inputs to
the system and their influences on the network. Moreover, the analysis of the
behavior of the model may raise new hypotheses concerning the implications of
the model in the neural processes occurring in other brain regions. They are
described next.

Neural Sensitivity to Moving Stimuli

Velocity and direction tuning are properties of neurons that were primarily
found in the visual cortex. These cells have been shown to fire preferentially
during the presentation of visual stimuli moving in a specific direction with a
specific velocity and inside their receptive field (Goodwin & Henry, 1975; Or-
ban et al., 1986; Cheng et al., 1994). This neurophysiological property has
then been suggested to be the basis of human ability for velocity discrimina-
tion (De Bruyn & Orban, 1988). Earlier work by Mineiro and Zipser (1998)
has already demonstrated how a neural field endowed with a fixed asymmetric
recurrent connectivity can exhibit such a sensitivity. However, their network is
constrained to exhibit a preferential tuning to a single velocity. Consequently,
in order to allow a neural structure to be sensitive to a broader range of ve-
locities, this model has to be replicated a large number of times with different
weight strengths. This approach has been followed by another modeling study
addressing the same discrimination problem (Chey et al., 1998). In contrast,
the present model proposes a mechanism relying on sub-layers having opposite
directional tunings, where the sensitivity to a precise velocity can be tuned dy-
namically by the background neural activity. However, visual areas such as V1
and V2 possess a wide range of neurons tuned to different velocities (Goodwin
& Henry, 1975; Orban et al., 1986), which may argue against the present model.
Nevertheless, area MT, which is located further in the visual processing path-
ways, is endowed with velocity tuned cells which distribution is centered near
some extreme values (Cheng et al., 1994). Since MT is directly connected to
the parietal cortex (Wise et al., 1997), which is known to be the locus of some
decisional processing (Shalden & Newsome, 2001), this may confirm the model-
ing approach described here. The brain may be capable to adapt the dynamics
of its internal representations toward that of visual stimuli for discrimination
purposes. Finally, computationally speaking, in order to have large range of
velocity sensitivities in the two-dimensional retinal space, the complexity of this
model is of order O(n3), where n is the number of neurons along a single di-
mension, whereas the previously mentioned approach is of order O(n4) (Chey
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et al., 1998; Mineiro & Zipser, 1998).

Sensorimotor Transformations and Motor Control

The transmission time of information across neural structures is critical for
time-dependent tasks such as the control of movements. However, the brain is
known to suffer from delays arising from the substrate in which sensorimotor
information is encoded, i.e., the neurons. In addition to the integration time
constant of a single neuron, the high density of the recurrent connectivity among
cortical columns and across brain regions, while providing the brain with high
computational power, adds an even stronger inertia to the information flow and
consequently increases the overall system time constant. Both neurophysiolog-
ical and modeling studies have already described the consequences in response
latency of intra-layer recurrent and center-surround connectivity during simple
stimulus-response tasks (Raiguel, Xiao, Marcar, & Orban, 1999; Panzeri et al.,
2001). Moreover, according to hypotheses raised by the neural field approach,
this recurrent connectivity has another side effect which was not addressed by
these studies. It concerns the difficulty of such neural representations to move
from a given attractor state to another.

This problem has several implications regarding recently proposed neural
substrates that are suggested to be at the basis of sensorimotor transformations
(Burnod et al., 1999; Deneve et al., 1999; Salinas & Thier, 2000; Scherberger &
Andresen, 2003) (See also Chapter 5 of this thesis). Indeed, these approaches
rely on populations of neurons encoding basis functions and grouped within gain
fields, which are neural populations showing a dense recurrent connectivity and
which receive changing inputs from several external sources. For example, to
compute the location of a visual target in body-centered coordinates, the brain
is supposed to merge information related to the target location in retinal space,
to the eyes displacement relative to the head and to the heading direction in
body-centered frame of reference. Then, in spite of the inertia resulting from
the recurrent connectivity, the desired information has to be read out from this
combined representation with a latency as short as possible. Nevertheless, the
brain successfully executes that operation. For instance, in the visual cortices
of the monkey, neurons have been found to fire even before a saccade brings
a stimulus into their receptive field (Unema & Goldberg, 1997; Nakamura &
Colby, 2002). This neural activity may be the result of a predictive update of
the visual representation, that may explain, at least partially, that eye tracking
of predictable targets such as one’s own hand can be performed with almost
no latency (Vercher et al., 1996; Miall & Reckess, 2002). Neurophysiological
findings also indicate that large groups of neurons in the cerebellum display
a preferential tuning to arm position and movement direction. These neurons
also fire with almost no latency when compared to real arm dynamics (Fu et
al., 1997; Roitman et al., 2005). Together, these findings suggest that the brain
may use forward models in order to predict the consequences of upcoming move-
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ments. This work proposed a neural mechanism for updating internal sensory
representations by means of velocity integration. Consequently, this study sug-
gests that the integration time of gain fields can be reduced drastically and
thus, that sensorimotor transformations can be performed with almost no de-
lay. Therefore, in addition to the suggested role of neurons of the cerebellum
and of motor and parietal cortices in the control of movements (Kalaska et al.,
1990; Georgopoulos, 1996; Schweigenhofer, Arbib, & Kawato, 1998; Todorov,
2000), their sensitivity to non-linear mixtures of information, such as arm posi-
tion and velocity, may also reveal that these areas take advantage of an internal
integration process. By means of a rapid and predictive-like updating of the
information they convey, they could avoid waiting on slow sensory feedbacks.

Shared Representations: Motor Imagery and Imitation

The model developed here has also some implications concerning the neural
mechanisms related to motor imagery and imitation. First, motor imagery is
the ability to mentally imagine oneself or someone else executing a movement.
Recent findings suggest that this mental operation is performed in motor terms,
i.e., by activating parts of the motor cortices that would be effectively involved
in overt movement execution (Jeannerod & Decety, 1995; Porro et al., 1996;
Fogassi & Gallese, 2002). Computationally, this hypothesis implies that some
motor areas which receive projections from proprioceptive feedback during nor-
mal motor execution, should also be able to process simulated motor commands
without being influenced by sensory information. The analysis of the model
provides some insight to a potential neural mechanism which may resolve this
problem. Indeed, this study suggests that the same neural substrate, by increas-
ing its global excitation level, can detach itself from efferent sensory inputs, and
consequently perform an imagery task freely. Then, by lowering this level of
excitation, the external inputs can lock the network back to the actual sensory
state for the control and the overt execution of movements. In addition, the
present model may also, to some extent, contribute to the explanation of the
neural processes underlying the illusory perception of one’s own body resulting
from epileptic seizures, such as the autoscopic phenomena (Blanke et al., 2002;
Blanke & Mohr, 2005). Indeed, since epileptic seizures are defined as an abnor-
mal synchronization of the electrical activity of large ensemble of neurons, this
would result, in the model, in an abnormally high global excitation of the net-
work. Thus, by producing an undesired unlocking of the network representation
from the real sensory state, the representation of self gets disturbed. This could
then have for consequence a disintegration of self processing in the brain areas
related to self and others (Blanke & Mohr, 2005). Finally, by back-propagating
this conflicting information to visual areas, the reported hallucinations may be
observed.

Furthermore, shared representations have also been reported by experimen-
tal studies which consider the observation of movements as well as their exe-
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cution. Indeed, recent neurophysiological studies indicate that the observation
and the execution of actions activate both a shared complex of brain areas
known as the mirror neuron system (Iacoboni et al., 1999; Rizzolatti et al.,
2001). However, this calls for explanations as to what happens when action
execution and action observation occur simultaneously, and subsequently as to
how the brain minimizes conflicts which may arise from the integration of vi-
sual inputs related to the self and to the others. In contrast to motor imagery,
sensory feedback is here needed by motor areas for normal performance, but the
sensory signals corresponding to others movements should be discarded, or at
least not considered. The neural model proposed here provides a computational
hypothesis to resolve this issue. As shown in Section 7.3.5, when the network
receives a sensory feedback whose dynamics is compatible with its own intrinsic
dynamics, it can track and keep locking to that re-afferent input, and this even
if a distractor, such as an input signal resulting from movements performed by
others, is present. In addition, this model also predicts that errors may increase
with the decreasing ability of the network to update its internal representation
accurately with speed. At very high movement velocities, the pattern of errors
should reflect a bias toward a boundary corresponding to the internal limit for
movement integration.

Finally, this modeling study also gives some insights on a plausible neural
medium for learning by imitation through motor resonance (Gallese & Gold-
man, 1998; Wolpert et al., 2003; Oztop et al., 2006). This principle has been
proposed to explain the mirror response of the neurons in premotor areas, by
suggesting that the perception of others’ movements and actions activates in
parallel the internal representations of motor plans. Through competition, the
plan corresponding best is selected and may further be used for prediction of
movement outcomes, action understanding and imitation. Since the presented
model can potentially represent any state space, it may implement a motor plan
by setting its intrinsic dynamics to code for the movements corresponding to the
plan. Then, the state of a demonstrator’s movement may be fed into this net-
work. By monitoring the global energy of the neural ensemble which has been
shown to be maximal in the case where the internal dynamics match perfectly
that of the external input, it may thus become possible for the brain to select
the best among activated motor plans. Moreover, as suggested by earlier mod-
eling works (Demiris & Hayes, 2002; Wolpert et al., 2003; Oztop et al., 2006),
imitation processes may use such a comparison value to perform a gradient as-
cent on this energy function. Within this framework, movement imitation may
thus consist in maximizing the energy of the shared representation between self
and others’ movements.
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Summary

In this chapter, an extension of the classical neural field modeling approach
was presented. Its primary novel property (from which the others are derived)
is to allow the network to modify its intrinsic dynamics by acting on its back-
ground synaptic activity in a specific manner. As a consequence, the typical
marginal and continuous attractor state usually exhibited by neural fields can
become a linear trajectory or a limit cycle in the space of the neural representa-
tion. For instance, by considering that a forward model is actually driving the
network according to specific motor commands, this property allows the neural
field to update its internal representation in a predictive fashion without the
need to wait for slow sensory feedback. The dynamic properties of the model
were analyzed with a special focus on the behavior of the network when one
or more external stimuli are influencing the dynamics of the network. Finally,
the biological plausibility of the model and its implications concerning several
brain computational mechanisms were discussed in light of neurophysiological
and behavioral data. The addressed topics include velocity tuning to visual
stimuli, sensory discrimination, sensorimotor transformations, motor control,
motor imagery and imitation.

Like the models presented in Chapter 5, the model described here proposes
a plausible mechanism at the neural level which may contribute to the overall
processes underlying imitation. This work does not provide clear answers to the
question of which cortical pathways and cortical structures mediate the impor-
tant cognitive processes related to the human ability to discriminate between the
movements produced by the self or by other individuals. In order to investigate
this issue, the next chapter proposes a neural model that is in part composed of
the model described above. The fundamental idea behind it is to first explore
how the model accounts for the results of behavioral experiments that focus
on the well-known human ability for multisensory discrimination when visual
and proprioceptive information are biased. This work will then attempt to shed
some light on the neural mechanisms responsible for the cognitive processes in-
volved in the differentiation between the self and the others. In order to test
the hypotheses raised throughout this study, predictions of the model with re-
spect to an experimental interference paradigm are presented; these predictions
should be tested on real behavioral data.
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Chapter 8

Movement Generation,

Sensory Integration,

Sensory Discrimination and

Interferences

Chapter 7 developed a neural field model that was designed to provide a
neural network with the ability to discriminate sensory inputs which are

the consequence of self-generated movements. By integrating external com-
mands, the network was capable of modifying its intrinsic dynamics. Conse-
quently, it exhibited a preferential tuning to sensory inputs which are coherent
with its own dynamics. Although the analysis of the properties of the model is
already an important step toward a better understanding of the neural mecha-
nisms responsible for the processes of multisensory integration and discrimina-
tion, it is also important to provide a framework through which behavioral data
may be compared with model predictions. In this chapter several such experi-
mental paradigms are proposed. The topics are primarily related to multisen-
sory integration in situations where biases are imposed on the sensory feedbacks.
The main idea is to analyze how the system behaves in such conditions, and
subsequently to see whether it reproduces current experimental data and leads
to new experimental predictions. Two forms of bias are considered. The first is
artificially biased sensory feedback related to one’s own movements. The second
is interference resulting from observing others’ - a sensible possibility, since it
is believed that there are neural representations which are shared between self-
and others-generated actions.

8.1 Introduction

In order to better control the execution of movements, the brain may be en-
dowed with both an inverse and a forward model of the body (Miall & Wolpert,
1996; Decety & Sommerville, 2003; Wolpert et al., 2003). While the inverse
model computes the motor commands according to a desired target state with
respect to the current state of the body, the forward model takes these motor
commands, better known as the motor efference copies, and predict the conse-
quences of these commands, i.e., how the current state of the body will change.
By monitoring these predictions, the brain may anticipate possible perturba-
tions without the need to wait for slow sensory feedbacks. From an engineering
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point of view, such a coupled system is known to allows a more accurate con-
trol of movements as compared to a single loop control system. In addition, as
already mentioned along this thesis, and more particularly in Chapters 2 and 7,
by predicting the outcome of its own motor commands, the brain may compare
it with its actual sensory feedback. If both were to be different, it would indi-
cate either that the forward model has failed to predict correctly the movement
outcome and has hence to be refined or the commands changed, or that the
perceived sensory feedback does not in fact, belong to, or was produced by the
body it controls.

This capacity to determine the ownership of sensory feedbacks which may
come from different sensory modalities such as vision or audition, has been
suggested to be fundamental for the sense of agency to emerge (Decety & Som-
merville, 2003; Haggard & Clarke, 2003; Jeannerod, 2003). Indeed, the sense of
agency, as well as the sense of self appear to be the result from the integration
of coherent multisensory signals, where incoherent ones, if present, have to be
set apart from that internal representation. Therefore, a neural process capable
of determining which signals belong to the self, i.e., those which are the result
of self produced actions has to exist. Current body of evidence tends to localize
this cognitive skill in a network of cortical regions including the anterior-medial
frontal cortex (AMFC) and the tempo-parietal junction (TPJ) (Decety & Som-
merville, 2003; Decety & Chaminade, 2003). For instance, while lesions or
disturbance of the TPJ have been shown to produce hallucinatory perceptions
of the self, patients with lesions of the AMFC were often reported as attained
of schizophrenia, which is also a result of an altered representation of the self
(Blanke & Mohr, 2005). Furthermore, in well-being people, this discrimination
process has been shown to be not perfectly accurate. For example, a delay up
to one or two hundreds milliseconds between a movement believed to produce
an immediate auditory signal and its actual perception does not affect the feel-
ing of human subjects that the sound was clearly produced by them (Haggard,
Clark, & Kalogeras, 2002; Haggard & Clarke, 2003). In addition, when asked to
indicate the precise time at which the sound was heard, the subjects tend also to
underestimate the delay, as if the execution of the action biases the perception
time of its associated response toward that of the action. This behavioral effect
was denoted as the temporal binding of action and perception. Several expla-
nations to this phenomenon were provided in terms of behavioral advantages it
could provide. It may first compensate for the inherent noise and time delays
present in the sensory systems, and second, it may also facilitate the learning of
the associations between actions and effects (Haggard & Clarke, 2003; Engbert
& Wohlschläger, 2007).

Another set of interesting experiments showing that the process in charge of
determining whether a visual signal is controlled by the self or if it is under an
external influence has been proposed by Fourneret and Jeannerod (1998) and
in a follow-up study by Slachevsky et al. (2001). In an experimental setup illus-
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Figure 8.1: a) Experimental setup used by Fourneret and Jeannerod (1998), and
Slachevsky et al. (2001) in order to test human behavioral responses to biased visual
sensory feedback. Subjects hold a pen stylus connected to a computer which may
produce an artificial bias in the visual feedback projected on the table in front of the
subjects. b) On this projection screen, the starting point, as well as the target are also
displayed. c) When an angular bias (dotted line) is induced in the visual feedback,
a typical trajectory followed by the cursor (dark line) does not correspond to that
actually performed by the subject’s hand (light filled line). d) Median values of the
errors relative to the bias as produced by normal subjects and patients with lesions
of the frontal lobes. The error was measured as the area formed by the ideal straight
trajectory and by that followed by the visual feedback. While the error constantly
increases with the amount of bias in frontal patients, it stops growing and stays almost
constant in normal patients above a certain threshold value, namely, the discrimination
threshold. This suggests a conscious monitoring of the integration of conflicting sensory
signals. (Adapted from Fourneret and Jeannerod (1998); Slachevsky et al. (2001)).

trated in Figure 8.1, human subjects were asked to reach for a target by tracing
a vertical line shown on a computer screen. During each experimental trial, the
experimenter introduced bias in the visual feedback associated with the hand
location. This bias corresponded to a constant angle of deviation with respect
to the starting point and the ideal vertical line. It was then reported that below
a certain angle of deviation, the subjects were in general unaware of the bias,
while still being capable to reach for the target. In the experiment of Fourneret
and Jeannerod (1998), subjects were, after each trial, requested to estimate the
direction in which their hand deviated in proprioceptive terms. Two different
types of answers were given. One group of subjects indicated that their hand
deviated in the approximative direction of the visual signal, i.e., in the opposite
direction of the actual movement. In contrast, the answers of the other group
reflected the correct direction of deviation. However, importantly, all answers
clearly underestimated the actual amount of deviation. Interestingly, in a later

211



experiment, Slachevsky et al. (2001) used the same paradigm but increased the
range of angles of deviation. Similarly to the former experiment, the authors
of this study showed that for small deviations, subjects tend to be unaware of
the bias. Nevertheless, over a certain deviation threshold, they become aware
of that bias, and consequently modify their movement strategy. In addition, by
comparing the trajectories performed by the participants which consisted of a
control group and a group of patients with frontal lesions, they also pointed-out
the involvement of the frontal cortex in the process of discriminating whether a
sensory signal believed to be self-controlled behave as internally predicted. In-
terestingly, the integration of these different sensory inputs, in this case vision
and proprioception, which have to be similar on a spatiotemporal metric, reveals
that the multisensory binding principle described above is not only temporal but
also spatial.

Further, in relation with imitation, the principle of shared representations,
where sensorimotor representations related to movements executed by the self
and by others overlap has to be considered. Indeed, a monitoring of the own-
ership of each sensory signal is required, so that the brain can know to whom
the information encoded in these shared representations corresponds. A failure
of this monitoring process, usually involving frontal and temporal cortices, has
for instance been suggested to result in compulsive imitative behaviors such
as echopraxia1 (Lhermite et al., 1986; Shimomura & Mori, 1998). As already
mentioned in Section 2.2.1, although neurologically intact people can easily, dur-
ing everyday experience, discriminate between self- and others-generated move-
ments, interferences in the execution of movements are still reported during the
simultaneous observation of actions performed by other individuals (Brass et al.,
2000; Kilner et al., 2003; Bertenthal et al., 2006). It is well documented that
observing the movements of others may influence one’s own performance, in ei-
ther a differed moment (Paccalin & Jeannerod, 2000) or simultaneously (Kilner
et al., 2003). Observed deviations from the originally planned movements may
be very subtle and almost imperceptible, but they may also influence the gen-
eral contextual behavior, or even generate movements which were not initially
planned. Indeed, the imitative interference effects were not only observed during
the production of movements, but also during the execution of actions involving
objects as goals. For instance, if two potential target objects are present at
a reach distance, and that one of them has to be selected, the observation of
someone grasping one of the two objects can induce a positive bias toward the
reaching of that object (Wohlschläger & Bekkering, 2002).

The work presented here investigates how a neural model can exhibit some of
the previously mentioned human behavioral characteristics, in particular those
related to the multisensory integration of sensory signals associated with the

1Echopraxia is defined as the involuntary repetition of observed movements performed by
other individuals. This syndrome is mostly believed to be the result of neurological disorders.
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execution of movements. It will be shown that the proposed model can repro-
duce the spatiotemporal binding effect, where sensory inputs can be integrated
together up to some discrepancy level. Above that threshold, the system keeps
only track of the input corresponding best to its internally predicted state.
Further, another experiment attempts to describe the possible spatiotemporal
profiles of interference patterns when movement execution and movement ob-
servation occur simultaneously. Since several hypotheses can be considered as
to how the movements of others may influence one’s own internal representa-
tion, several conditions are considered and the associated movement responses
will be described in detail. Consequently, by reproducing the same experiment
with human subjects and recording the exact undesired movement response to
the observation of movements performed by an experimenter, it would be possi-
ble to determine the factors which influence automatic imitative behaviors, and
subsequently the neural pathways which mediate them.

8.2 Neural Model

Similarly to the work presented in Chapter 6, the present computational
study considers a neural model based on the neural field approach for controlling
kinematically the movement of a single body joint such as the shoulder. Since
the tasks addressed here are related to the maintenance of a coherent internal
state to dynamically changing sensory inputs, the core building block of this
model consists of the continuous attractor neural network described at length
in Chapter 7. Indeed, this network has been shown to be capable of integrating
velocity commands and also to be able to discriminate between two external
inputs, equal in strength, by comparing their dynamical properties.

In this work, a simple neural network based on an inverse and forward model
for controlling goal-directed movements along two degrees of freedom is consid-
ered. First, the model described in Chapter 7 is slightly modified in order to
account for a spherical parameter space. Further, a neural network which can
generate goal-directed velocity commands is proposed, followed by a description
of the coupling between these two neural fields. Finally, the complete architec-
ture of the model that will be used in the experimental scenarios will be given.

8.2.1 Generation of Movements on a Spherical

Surface: Forward Model

In order to represent a variable on a sphere, the definition domains of the neu-
ral preferential tuning, as described in Section 7.2, have to be redefined. Here,
the primary variable has to be defined in �rA ∈ ΓA =

{
�rA ∈ R

3
∣∣ ‖�rA ‖ = 1

}
.

Next, since a displacement on a sphere is most easily described by a angu-
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lar motion around an axis, i.e., a rotation, the possible directions of motion
represented by the secondary variable are also defined on a sphere such that
�rB ∈ ΓB = ΓA = Γ. Therefore, in contrast to the original formulation given in
Chapter 7, the secondary variable does not anymore represent the direction of
movement but rather the rotation axis around which the motion occurs. Consid-
ering now the equation governing the dynamics of the system, the definition of
the recurrent weight profile has also to be adapted to the previously described
change of how movements are encoded. In order to drive an activity bump
around a preferential axis �rB, the following recurrent weights

[
WR(�rA′ , �rA) − λ∇WR(�rA′ , �rA) × �rB′

]
(8.1)

have to be used in place of those given in Equ. (7.1). The fundamental weight
profile WR(�rA′ , �rA) is nevertheless still generated by Equ. (3.8), since this equa-
tion is general to arbitrary dimensions. As a consequence, imposing a back-
ground input h(�rB, t) to this network where

h(�rB, t) = h0

[
1 +

τ

λγ
�ω�(t) · �rB

]
(8.2)

will drive the intrinsic dynamics of the neural field to develop a tendency to
move any activity bump with an angular velocity ‖�ω�(t)‖ around the axis given
by �ω�(t)/‖�ω�(t)‖. Note that the system variables γ, λ, τ and h0 were already
introduced in Section 7.2.2.

In Figure 8.2a, a visual representation of the resulting network is shown.
Each sphere corresponds to the ensemble of neurons sharing the same preferred
angular movement direction indicated by the rotating arrow. In Figures 8.2b,
c and d, the intrinsic dynamics of the network is shown when an input given
by Equ. (8.2) is fed to the field for different values of �ω�(t). These illustrations
are given in the form of vector fields, where each vector corresponds to the
instantaneous displacement induced on an activity bump located at the origin
of the vector. As can be seen, the recurrent weight profile described in Equ.
(8.1) creates vector fields which rotate the activity packet currently encoded in
the network.

8.2.2 Generation of Velocity Commands: Inverse

Model

As described above and in Chapter 7, the proposed neural structure allows
a traveling activity pattern to be controlled by an external velocity command.
By acting on the background synaptic input of each sub-layer whose neurons
share the same preferred movement direction, one can control the direction as
well as the velocity of the internal dynamics of the neural field. In order to
generate goal-directed motor commands, this section presents a network which,
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Figure 8.2: Graphical illustration of the structure of a neural field defined on a sphere
which can update its internal representation by means of an angular velocity command. a)
The network structure is composed of sub-layers, denoted by small spheres, where each
neuron share the same movement preference. In contrast, each sub-layer is preferen-
tially tuned to a different angular motion indicated by the circular dark arrows. Since
all sub-layers are interconnected, the balance among their activation may drive the
internal representation of the network in a given direction or not. b) On each sphere
located in the periphery, a vector field corresponding to the motion that would be in-
duced by its associated sub-layer on an activity bump is shown. Since the background
activation is perfectly symmetric in this case, no change in the internal representation
is produced, as shown in the sphere located at the center, which consists of the aver-
aging of the vector fields produced by all sub-layers. c-d) Two examples of movement
induced by an angular velocity input �ω� (Equ. (8.2)) are shown. While the sub-layers
having a movement direction preference close to the input vector �ω� are more acti-
vated, the background activity of the others is decreased. This generates a rotational
vector field around the axis given by �ω�.
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when given a goal to reach in the primary parameter space, can produce velocity
commands to reach it. The general principle behind the proposed mechanism is
illustrated in Figure 8.3. A neural field capable of generating a moving activity
bump, denoted as the state network, is reciprocally connected to another net-
work, namely, the command network, which is not necessarily endowed with the
same integration ability. In order to keep the modeling as simple as possible,
this network is assumed to share the same structure as the state network but
without any recurrent connectivity.

By definition, the state network encodes the current state of the system, for
example, the current arm position. It projects this information to the command
network so that the velocity commands can be dependent on the current state.
Next, as shown in Figure 8.3b, the generation of commands is based on the
principle that this network receives also another external input which preshapes
its subthreshold activation. How this preshaping could be produced by a third
part network will be described later in the text. This subthreshold preshaping
has to be asymmetric across the sub-layers of the neural field having an opposite
direction preference. It will further produce a given command according to the
current state of the system. Indeed, as depicted in Figure 8.3c, for a given state,
if the subthreshold preshaping of the sub-layer, whose preferential direction
corresponds to the desired direction of movement, is set to a higher level than
that of its opposite sub-layer, the global firing rate of the former sub-layer
becomes stronger than that of the other. Consequently, by projecting the global
excitation of each sub-layer on each associated sub-layer of the state network
(Figure 8.3d), a movement is initiated. Then, this motion stops as soon as a
perfect balance in the excitation of each sub-layer of the command network is
reached, i.e., when and where the subthreshold preshaping of each sub-layer
is equal. This location in the neural space can thus be seen as the goal or
the attractor generated by the command network. As example of evolution
over time of the system activity shown in Figure 8.3e. In the next section, the
technique as to how a goal-dependent subthreshold preshaping can be produced
is described.

Goal-Directed Movement Generation

Up to now, two networks reciprocally connected were described. The state
network represents the state of the system and integrates velocity commands
provided by the command network. Then, in order to generate of movements
toward a goal, the goal is encoded in a third neural representation, namely, the
goal network. It consists of a standard neural field defined for simplicity, without
the extension proposed in Chapter 7. It receives an external input �sG(t) ∈ Γ,
defined in Equ. (3.10), a variable which indicates the location of the target.
Then, in order to produce a goal-dependent subthreshold preshaping of the
command network, the goal network projects its activity by means of synaptic
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Figure 8.3: The proposed neural mechanism of movement generationis illustrated. a)
Two coupled neural field-based networks can generate a movement in the internal
state representation. The state network encode the current position as well as the
current velocity of the system. This state is projected into the command network. It
computes the velocity commands according to a sensory goal that are sent back to
the state network, which in turn, integrates these commands and updates its internal
representation accordingly. In order to describe step by step this movement generation
process, the neural activation that can be observed within the coupled network is
illustrated in the Figures b-d). b) On the right, the current state of the system is
shown. Since the balance of excitation is equal across each sub-layer having different
preferences of movement direction, the current state does not change. On the left,
the command network is silent, but a goal-dependent subthreshold activation pattern
is present. Note that how the goal may preshape the subthreshold activation will
de described later in the text. c) By projecting the current state into the command
network, this network gets activated. Because of this subthreshold activation, the
activity across the sub-layers is asymmetrically balanced. d) The average excitation
level of each sub-layer of the command network is projected back to the state network.
This generates an asymmetric balance of excitation in that neural field. Consequently,
the strongest sub-layer drives the internal representation into its preferred direction of
motion. e) The activity packet on the surface of the field starts to move. It stops as
soon as the subthreshold activation pattern of all sub-layers of the command network
becomes locally equal.
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weights WG,C appropriately set. Because a convolution on a gaussian-like input,
such as that produced by the synaptic projections from the activation pattern of
the goal network, can almost result in any synaptic excitation profile, any desired
subthreshold preshaping can almost always be realized by synaptic projections.
Its precision only depends on the breadth of the neural representation. The
synaptic projections which are considered here are given by

WG,C(�rA′ , �rA, �rB) = αG,C
(
�rA · (�rA′ × �rB) − δG,C

)
(8.3)

where αG,C corresponds to the amplitude of the weights and δG,C to a negative
offset. Further, in addition to this projection from the goal network, the com-
mand network also receives the state information from the state network. Its
external inputs can thus be written as

xC(�rA, �rB, t) =
˛

Γ

WG,C(�rA′ , �rA, �rB) f
(
uG(�rA′ , t)

)
d�rA′ +

‹
Γ×Γ

[
W S,C(�rA′ , �rA) − λ∇W S,C(�rA′ , �rA) × �rB′

]
f
(
uS(�rA′ , �rB′ , t)

)
d�rA′ d�rB′ (8.4)

where W S,C(�rA′ , �rA) are the projection weights from the state network to the
command network. They exhibit a center-surround profile as defined in Equ.
(3.8). The asymmetric term with the gradient operator allows the state infor-
mation to be immediately integrated into the command network, i.e., it com-
pensates for the time constant of the neurons (For more details, see Section
7.2). Next, the command network sends velocity commands back to the state
network through the background input hS(�rB, t) of the latter. This projection
links the mean neural activation of each sub-layer with the sub-layers of the
state network according to the similarity of their preferential motion direction.
It is given by

hS(�rB, t) = hS
0 +
‹

Γ×Γ

WC,Sf
(
uC(�rA′ , �rB′ , t)

)
(�rB · �rB′ ) d�rA′ d�rB′ (8.5)

where WC,S > 0 is the constant strength of the projection weights and hS
0 is a

constant background excitation level.

In order to show that this coupling between the state and the command
network can effectively drive the current state of the system toward the goal,
several mathematical simplifications will be assumed. First, the output activity
of the goal network is assumed to be a dirac distribution D(�rA, �sG(t)) centered
on the goal location �sG(t), i.e., f

(
u G(�rA, t)

) ≈ D(�rA, �sG(t)). As a consequence,
the first integral term of Equ. (8.4) reduces to WG,C(�sG(t), �rA, �rB). Further,
the second integral term of Equ. (8.4) produces a periodic gaussian-like input.
By the symmetry of weights W S,C, and since the command network also en-
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Figure 8.4: a) The approximation of the neural activation of the command network
is shown for two sub-layers having opposite motion direction preference. This math-
ematical simplification was further used to calculate the effect of the projection from
this network to the state network for generating movements. b) A vectorial illustra-
tion of the resulting command vector generated by the projections from the command
network. Since the angular velocity command corresponds to the cross product of the
current state �p S(t) with the location �s G of the goal, it drives the system’s state toward
the goal.

codes the actual state of the system, the result of the convolution is centered
on the population vector �p S(t) of the state network (Equ. (7.2)). Moreover,
because of the non-linearity of the activation function f and of the difficulty
to integrate gaussian-shaped functions, an approximation of the neural activity
f
(
(u C(�rA, �rB, t)

)
of the command network is also assumed here. It is shown

graphically on Figure 8.4a, and is written as

f
(
uC(�rA, �rB, t)

) ≈
{

a0 + WG,C(�sG(t), �p S(t), �rB) �rA · �p S(t) ≥ cos(a1
2 )

0 otherwise (8.6)

where a0 and a1 are constants. The main constraint that must be respected is
that a0 > WG,C(�rA′ , �rA, �rB), ∀�rA′ , �rA, �rB ∈ Γ. This implies that the amplitude
of the projection from the state network to the command network has to be
higher than the subthreshold activation of the latter network at any location in
the neural parameter space. From this, the background input hS(�rB, t) of the
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state network given in Equ. 8.5 can be approximated, which gives

hS(�rB, t) ≈ hS
0 + WC,S

˛
Γ

k1

[
a0 + WG,C(�sG(t), �p S(t), �rB)

]
(�rB · �rB′ ) d�rB′

= hS
0 + WC,S

˛
Γ

k2

[
�p S(t) · (�sG(t) × �rB′ )

]
(�rB · �rB′ ) d�rB′

= hS
0 + WC,S k3

[
�p S(t) · (�sG(t) × �rB)

]
= hS

0 + WC,S k3

[
(�p S(t) × �sG(t)) · �rB

]
(8.7)

where ki, i ∈ {1..3} are positive constants resulting from the integration. Since
the aim of this section is to provide a qualitative description of the behavior
of the system, exact values for ki will not be given. Finally, by rewriting this
result in a form similar to that given in Equ. (8.2), it becomes

hS(�rB, t) ≈ hS
0

[
1 + ε (�p S(t) × �sG(t)) · �rB

]
(8.8)

where ε > 0 is a constant. Therefore, as illustrated in Figure 8.4b, this input
generates an angular velocity command that drive the internal state of the
system toward the goal. In addition, while Figures 8.5a and b show vector fields
generated by this mechanism for two different goal locations, Figure 8.5c depicts
the neural activation of the command network for a specific state �p S(t) of the
system.

8.2.3 Neural Architecture

Figure 8.6 describes the neural model that is proposed here in order to repro-
duce and explain several behavioral data related to multisensory integration, to
the sense of agency and to the interferences on self movements reported during
the observation of movements performed by others. The model mainly consists
of the paired inverse and forward neural fields described above, on top of which
several supplementary external inputs and an output network were added. First
of all, the output network, receives the same velocity commands as the state
network. The purpose of this additional network is to integrate the received
commands in order to simulate their overt execution. The information encoded
by this output network is further considered as being the real and overt state of
the whole system, whereas the information encoded in the state network corre-
sponds to the perceived state which consists of the integration of multisensory
signals. By multisensory inputs, proprioceptive as well as visual inputs are con-
sidered. One one hand, the proprioceptive input is an external feedback signal
which corresponds to the real state of the system, i.e., the information encoded
by the output network retrieved by its population vector �pO(t). This input is
fed into the state network by means of Equ. (7.11) where the input stimulus
location �s(t) used in that equation is set such that �s(t) = �pO(t). It is impor-
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Figure 8.5: Goal-directed movement generation: a-b) When a goal input is projected
into the command network, the latter generates a vector field which attracts the current
network state toward that goal. c) Illustration of the membrane activity of the neurons
of the command network for a given goal and a given state of the system. These
activation patterns are the result of the combination of the subthreshold activation
with the state representation given by the state network. As can be seen, since the
distance between the current state and the goal is the longest around the z-axis, the
difference of excitation of the two sub-layers oppositely tuned to that axis is the largest.

221



Output NetworkState Network

Command Network

Goal Network

Proprioceptive Feedback

Velocity commandsEfference 
copies

Pe
rc

ei
ve

d 
st

at
e 

fe
ed

ba
ck

Goal position

Visual Input

V
is

ua
l f

ee
db

ac
k 

in
flu

en
ci

ng
 th

e 
go

al
 p

os
iti

on

V
is

ua
l f

ee
db

ac
k 

in
flu

en
ci

ng
 th

e 
ve

lo
ci

ty
 c

om
m

an
ds

Inverse model

Forward model

c) b) a)

Subthreshold preshaping projections

External inputs or synaptic projections
representing state information

Modulatory inputs of projections
affecting the background input

Figure 8.6: Illustration of the architecture of the model used in this study. The goal
network which encodes the target position creates a subthreshold preshaping in the
command network by means of synaptic projections. This network is then reciprocally
connected to the state network. The latter neural field sends the current state of the
system to the command network, which projects back the velocity commands needed
to reach the goal. Simultaneously, the commands are also sent to another network,
which serves here only to integrate these commands. The output state of this network
is intended to correspond to the real end-effector position. This information is then
used as a proprioceptive feedback to the state network. It is important to note that the
state network represents the state that is perceived by the system, and not the real one.
Indeed, in addition to that proprioceptive feedback, this network can also, through
channel a) receive a visual feedback. A multisensory integration of information thus
occurs here. Finally, as will be described in the second experiment (Section 8.3.2),
visual feedback may also influence the network dynamics by affecting the goal position
or the velocity commands through channels b) and c), respectively.
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tant to stress that this work does not take into account the time delay which is
known to arise from the sensorimotor loop which sends motor commands to the
muscles and which brings back the proprioceptive signals to the cortex. On the
other hand, the considered visual input signal may consist of different types of
information. It can be either the direct visual representation of the movement
belonging to the self which is, in normal conditions, identical to the proprio-
ceptive input, or a biased visual feedback of that same information, or finally,
a visual signal of the same body part, but which belongs to another individual.
The exact mathematical form as to how these types of visual inputs are fed to
the network will be given when appropriate, in the description of the setup of
each experiment.

8.3 Experiments and Results

In this section, two experiments are proposed to validate the model, as well
as to provide experimental predictions regarding some of the current hypotheses
concerning how imitative interferences are induced in the brain when observing
the actions of others. The description of each experiment will give details about
their setup and simulation results. In addition, the values taken by the network
parameters in all these experiments can be found in Appendix B.4.

8.3.1 Motor Adjustments caused by Multisensory

Conflicts

The first experiment attempts to provide an explanation at the neural net-
work level of the behavioral evidence that the multisensory integration of self-
related information is broadly sensitive to the spatial congruency of the feedback
signals. Indeed, this integration has been shown to be performed up to a cer-
tain level of discrepancy between these multisensory signals. The experiment
that is described here is very similar to those proposed by Fourneret and Jean-
nerod (1998) and Slachevsky et al. (2001). In their experimental setup, shown
in Figure 8.1 and described in Section 8.1, a bias was artificially applied to the
visual feedback, which is meant to indicate the actual location of the subjects’
hand. Consequently, in order to reach for the target, subjects had to correct
their movement by applying a motor bias in the opposite direction. However,
since the amount of the bias could not be inferred instantaneously, the subjects
had to apply their correction on the fly. Interestingly, for small bias, subjects
mostly corrected unconsciously their movements, whereas for large biases, they
has to consciously monitored their movements.

In comparison to this work, the the experimental setup described here differs
slightly from of the task instructions. In order to avoid considering the change
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of movement strategy resulting from large visual bias, and hence to avoid de-
veloping an additional neural module in charge of it, the task here is no more
to reach for the target visually, but at the proprioceptive level only, leaving the
visual feedback with the role of a distractor. An experimental trial is decom-
posed as follows. The goal network initially receives an input which indicates the
starting position �sG

0 so that the system converges toward that initial location.
The angular bias θ, centered around the starting position, is then introduced in
the visual feedback. That feedback, coding for the state �sV(t) of the system in
visual terms is fed into the state network using Equ. (7.11). Note that the am-
plitude of both the visual and proprioceptive signals were set to the same value,
so that none of them was considered more important than the other. Further,
the goal is set to the target position �sG

1 , which drives the system to reach for it.

Illustrations of the typical behavior of the system during this task is given
in Figure 8.7a for two different conditions, one with a relatively small bias, and
another with a larger one. This figure shows the population vector response of
several neural populations of the model, especially those corresponding to the
actual and perceived states of the system. Moreover, since the simulation were
performed on a spherical space, in order to project the neural responses on a
plane, the transformation shown in Figure 8.7b was applied to the data. In
the small bias condition, it can be noticed that the real movement is initially
correct, i.e., it moves straight to the target. However, since the visual feedback
is sightly biased, the perceived multisensory representation is shifted between
the proprioceptive and the visual feedback. Moreover, since both sensory rep-
resentations do not gets far enough from each other, the internal representation
keeps integrating both input sources. Consequently, although the perceived in-
ternal state accurately reach the target, it is not reached neither visually nor
proprioceptively. At the beginning of the other trial, where a large bias was in-
duced, the same shifting effect is observed. However, when the visual feedback
becomes too different from the proprioceptive signal, it enters in conflict with
the network intrinsic dynamics. Consequently, it is removed from the multisen-
sory integration process, allowing the model to finally reach the target without
paying attention to the bias induced in the visual feedback.

Other simulation results are given in Figure 8.8. They show that up to a
certain amount of the visually induced bias, the proprioceptive and the visual
inputs are merged together in the multisensory state perceived by the system.
Since both inputs are set with an equal strength, the perceived state represents
the average location conveyed by both inputs, and consequently, the output net-
work does not perfectly reach the target but stays at half of the angular distance
determined by the bias. However, over the discrimination threshold, the state
network selects the input which corresponds best to the state predicted by its
internal dynamics. The visual input gets thus inhibited and the proprioceptive
signals becomes the only ones on which the internal representation relies.

Further, in order to determine the angle of deviation at which, for a given
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Figure 8.7: a) The transformation used to convert simulation data encoded in spher-
ical coordinates to planar ones is given. b) Illustration of two trajectories followed by
the network where two different visual bias θ were applied. In both cases, since the
trajectory of the perceived state ends on the target, the model believes that the goal is
reached and hence stops moving. On the left, the induced bias is small. Consequently,
the perceived state lies between the actual state, given by proprioceptive signals, and
that provided by the visual feedback. A different behavior can be observed on the
right where the artificially induced visual bias is much larger. Indeed, although the
perceived state is also biased at the beginning of the trial, the system finally selects
the proprioceptive feedback because it corresponds best to the internal dynamic of
the system, and also because the two sensory signals are too divergent. After a cor-
rection phase, the perceived state finally converges to the information provided by
proprioception only.

breadth σ of the internal representation, the system becomes capable of clearly
perceiving a difference between visual and proprioceptive signals, a model func-
tion f , linear by parts, was fitted to these simulation results. It is given by

f(θ) =

⎧⎪⎨
⎪⎩

a0θ θ ≤ θ0

a0θ0 − a1(θ − θ0) θ0 < θ ≤ θ1

a0θ0 − a1(θ1 − θ0) θ1 < θ

(8.9)

where a0 and a1 correspond, respectively, to the raising and falling slope of the
function, and θ0 and θ1 to the boundaries where the strength of the conflicts
in the multisensory integration begins to decrease and when it reaches almost
zero, respectively. The discrimination threshold θ̂ is then defined such that
θ̂ = (θ0 + θ1)/2. Results of this fitting procedure2 as well as values of the
discrimination threshold θ̂ with respect to σ are given in Figures 8.8b and c.
As can be observed, the dependence of the breadth of the representation on the
discrimination threshold is almost linear.

Although the measure of the error is technically different between this study
and that of Slachevsky et al. (2001), there is an important qualitative similarity
between the simulation results presented above and theirs. In both studies, the

2The fit was obtained by estimating the coefficients of the nonlinear function f using least
squares.
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Figure 8.8: a) Simulation results showing the final angular offset from the desired
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σ of the neural representation. b) The result of the numerical fit on simulation data
using the function f(θ) given in Equ. (8.9) are shown. In addition, for small θ,
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It constantly increases with σ.
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error increases almost linearly until the bias reaches the discrimination thresh-
old, after which, the error stays more or less constant. However, because of
the difference in the task instructions as well as the way errors were measured,
in this work, the error decreases until almost zero around the discrimination
threshold. Nevertheless, this modeling study replicated the fact that sensory
discrimination is not accurate until a certain bias level.

8.3.2 Interferences during Simultaneous Execution

and Observation of Movements

In the second experiment, an analysis of the possible interference patterns on
self movements during the simultaneous observation of the movements of others
is considered. The setup of this task is very similar to that used by Kilner et
al. (2003), where a subject and an experimenter are simultaneously perform-
ing oscillatory arm movements in the same or different directions (See Figures
2.1c and d). In this experimental configuration, the presence of interferences
were revealed by an increase of variability of the subjects’ movements, which
was higher for incongruent pairs of observed and executed movements than for
congruent ones (Kilner et al., 2003; Chaminade et al., 2005).

The idea behind the experiment proposed here, is to analyze the interference
patterns into more details. Instead of considering only movement variability as
a measure of the interference (Kilner et al., 2003; Chaminade et al., 2005), this
work proposes to look for interference patterns at the level of the movement
trajectory. As will be shown later, this analysis may be useful for determin-
ing which components of observed movements are inducing interferences, and
subsequently, which cortical pathways could be responsible for such an effect.
Therefore, in the present study, the task was slightly modified. In order to
simplify the analysis of the interference patterns, movements are restricted to
a single motion plane. The subject, standing in front of the experimenter, is
requested to raise his/her arm in the horizontal plane and to keep it straight
toward the experimenter, whereas the latter produces only vertical oscillatory
arm movements in the direction of the subject.

Considering now the model connectivity, recall that it incorporates several
key elements associated with the movement goal, velocity commands as well as
an internal shared representation. Therefore, the response of the model to visual
signals interfering with these three different system pathways can be simulated.
Effects resulting from interferences induced in these three regions of the model
are separately tested in three different conditions.

First, as illustrated on Figure 8.6, the actual position of the hand of the
experimenter may influence the goal representation of the subject. In this con-
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dition, the variable encoded by the input of the goal network becomes

�sG(t) =
�s0 + ρ�sArm(t)
‖�s0 + ρ�sArm(t)‖ (8.10)

where �s0 and �sArm(t) correspond, respectively, to the subject’s target arm po-
sition and the position of the arm of the demonstrator as given in Equ. (6.5).
ρ denotes the strength with which the representation of the goal is biased by
the observed movement. Secondly, if the interferences are considered to come
from a pathway feeding the observed velocity of the experimenter’s hand into
the inverse model of the network, the imitative mechanism is assumed to try to
drive the actual state of the system toward that speed. This can be realized by
acting on the background input hC(�rB, t) of the command network, which gives

hC(�rB, t) = ρ
(
(�̇sArm(t) − �̇p S(t)) · �rB

)
(8.11)

where, ρ corresponds here to another factor modulating the strength of that
external input. Finally, if the reported interferences are caused by an integra-
tion of sensory information related to both self and others into the same neural
substrate, the external input of the state network, in addition to receive propri-
oceptive feedback, also receives an input �sV(t) equal to the orientation of the
experimenter’s arm �sArm(t). Note that, similarly to the work in Chapter 4, the
sensory information which flows along the system is assumed to be encoded in
the same frame of reference.

Interference Patterns

Figure 8.9 reports, for each condition, a typical interference pattern which
consists of the trajectory followed by the model’s effector while observing the
experimenter’s oscillatory movement. In the condition where movement obser-
vation influences the goal of the executed movement, the interference patterns
closely resembles to the interfering movement. It is however smaller in ampli-
tude and lags behind the observed motion. In contrast, in condition where the
movement velocity is in charge of the interferences, the motion pattern leads
the trajectory of the observed movement. By contrasting these two conditions,
on one hand, the lag is primarily produced by the time needed for the goal
representation to be updated and then for propagating this information into
actual motor commands. On the other hand, the lead is caused by the inverse
model, which reacts against the perturbation by producing commands in the op-
posite direction to that of the observed movement. Indeed, at the beginning of
the movement period, the currently perceived state approximatively indicates
the goal position, and thus, no motor commands are produced. However, as
the demonstrator moves, this induces a movement of the model which is then
counteracted by the self-generated commands which tries to keep the straight
position.
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Figure 8.9: Typical interference patterns are shown aligned to a single period of the
oscillatory movement performed by the experimenter. a) The movement performed by
the demonstrator follows a cosine shaped trajectory. b) Interference pattern observed
in the first condition where the representation of the static target position is influenced
by the position of the experimenter’s hand. c) In the second condition, the network
receives conflicting velocity commands which try to make the velocity profile of the
observer’s movement to match that of the experimenter. d) Typical trajectory followed
by the observer’s hand in the third condition where the conflict occurs at the level of
the internal representation of the system’s state.

Further, in the last condition where information related to self and others are
merged together, the typical interference pattern is quite different. When the
position of the experimenter’s hand becomes similar to that of the subject, the
perceived state of the system becomes less precise by representing a sort of aver-
aging of this input with the proprioceptive feedback. Consequently, the velocity
commands in the opposite direction is produced. Then, as the experimenter’s
hand continues its trajectory, the internal integration process of multisensory
signals selects only the input which corresponds to the subject actual effector.
Since at this particular moment, it is located away from the target position, a
velocity command in the opposite direction is initiated, which produces a de-
viation in the opposite direction in order to recover the desired position. This
phenomenon is finally reproduced during the second part of the experimenter’s
movement, when his/her hand comes again in the vicinity of the subject’s hand
position.
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Figure 8.10: Results of the numerical fit of the trajectories followed by the population
vector of the output network as recorded in the a) first and in the b) second condition.
The response variables shown here correspond to the results of the fit which used the
function described in Equ. (8.12). The signification of these variables are also shown
in Figure 8.9.

Effects of Movement Velocity and Input Strength

Since the velocity of the observed movement, given by its maximal angular
speed ˆ̇ϕD as well as the strength ρ of its influence on the system were systemati-
cally varied, their effects on the interference patterns were analysed. In order to
describe them, the amplitude and the temporal phase of the maximal deviation
produced by the interferences on the overt motion trajectory were considered.
As can be noticed in Figure 8.9, the interference patterns in the two first condi-
tions can easily be fitted by means of a parameterized cosine function f(t) given
by

f(t) = φ̂ I cos
(

2π

(
t − t̂ I − 1

2

))
(8.12)

where φ̂ I is the maximal amplitude of variation and t̂ I its phase. This phase
is measured relative to the half period time of the observed trajectory so that
a zero phase indicates that both the observed movement and the interference
patterns are aligned. In contrast, the interference pattern produced by the
integration of self- and others-related sensory information is more likely to be
described by the difference between two gaussian functions, which is repeated
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Figure 8.11: Results of the numerical fit of the trajectories followed by the population
vector of the output network as recorded in the third condition. The same notation as
in Figure 8.10 is used. However, the fitting function corresponds here to a difference
of two gaussian functions as described in Equ. (8.13).

during the second half of the movement period with inverted amplitudes. In
this case, the model function f to be fitted is given by

f(t) = f0

(
t − 1

4

)
− f0

(
t − 3

4

)
where

f0(t) = ϕ̂ I exp
(
− (t − t̂ I)2

2σ̂2

)
+ ϕ̌ I exp

(
− (t − ť I)2

2σ̌2

)
(8.13)

where φ̂ I and φ̌ I are the maximal amplitude of variation in the sensory merg-
ing phase and in the discrimination phase, respectively. Similarly, t̂ I and ť I

correspond to the associated time at which the maximum deviation is attained.

In Figures 8.10 and 8.11, the results of the fit performed on the simulated
data during the three conditions are shown. A summary of the effects of each
external parameters on the amplitude and phase of the interference patterns is
provided in Table 8.1. In the first condition, where the representation of the goal
is biased, the velocity of the experimenter’s movement has no influence on the
amplitude of the interference pattern but tends to shift the phase to a later time.
The faster is the observed movement, the larger is the phase difference between
observed movement and the interference pattern. In contrast, the influence of
the strength ρ of the interfering input is opposite, in that it is proportional to
the amplitude of deviation and has no influence on the phase. In the second
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Bias influencing the
Goal representation Velocity commands Shared representation

ϕ̂I t̂ I ϕ̂I t̂ I ϕ̂I t̂ I ϕ̌I ť I

ˆ̇ϕD ↗ − ↗ ↗ ↗ ↘ ↗ ↘ ↗
ρ ↗ ↗ − ↗ ↗ ↗ − ↗ −

Table 8.1: Summary of the effects on the interference patterns produced by increasing
the velocity ˆ̇ϕD of the observed movement and the strength ρ of its internal represen-
tation. Results are shown for the three suggested hypotheses.

condition, the effect of these parameters is different. Both the velocity and
the strength of the input increase the amplitude of deviation as well as the
phase of the interference patterns. The faster is the observed movement, the
stronger is the interference. In addition, a strong coupling value leads the system
to match more closely the observed movement. Finally, in the last condition,
where the interfering signal related to the experimenter is integrated into the
representation of the state of the system, the effect of the observed movement
velocity is completely different to the other conditions. Indeed, the amplitude of
deviation is reduced as that velocity increases. Indeed, when a faster movement
is observed, the time during which the internal representation of the self and that
of others overlap is reduced, and consequently, the duration of the interference
too. The involvement of the sensory discrimination is here clearly at play in that,
as the two sensory inputs get distant, the wrong input is inhibited and has no
more influence on the system’s state. Next, the effect of the velocity on the phase
of the maximal deviations is however similar to those in the other conditions,
i.e., the phase increases with an increasing observed movement velocity. Next,
as could have been expected, the strength of the external signal affects the
amplitude of the interference pattern in a proportional manner. Indeed, as ρ

grows, the bias induced in the shared representation moves the perceived state
more toward the that of the observed movement. Finally, the effect of this
parameter on the phase of the deviation is quite small. It seems that this is
the consequence of the model ability to select the correct sensory input with an
almost equal latency for any values of ρ, while the amplitude of the visual signal
stays below that of the proprioceptive feedback.

8.4 Discussion

In this chapter, a neural network model based on a paired inverse and for-
ward model for the control of goal-directed movements was shown to be capable
of controlling the kinematic of simple movements. The forward model consists
of a network which integrates the commands provided by the inverse model
on the currently perceived state. This state is the result of the integration of
multisensory signals coming from proprioceptive and visual feedbacks. Impor-
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tantly, the fundamental property of the internal dynamics of the system is to
constrain the representation of the state to stay coherent with the consequence
of self-generated motions. Indeed, when biased or contradictory feedback signals
are perceived, they are removed from the integration process. In addition, the
model was also designed so as to be capable to investigate how self- and others-
generated movements are simultaneously integrated together within a shared
representation of movements.

While the biological plausibility of the part of the model in charge of in-
tegrating velocity commands has already been discussed in Chapter 7, that of
the inverse model is discussed here. First of all, the biological plausibility of
its neural structure, by its similarity to that of the forward network, can easily
stand on the same arguments (See Section 7.4). However, the plausibility of
the principle as to how goal-dependent commands are produced may be more
difficult to assess. Indeed, the subthreshold activation patterns, which were
suggested to control velocity commands, can not, by their subthreshold na-
ture, be directly compared to neural recording data. Nevertheless, they may be
indirectly observed by monitoring how the firing amplitude of the activity of
neural populations, which represent current state variables, may be influenced
by different goal locations. Moreover, since the activity profile of these neurons
can either be positively or negatively modulated by the distance to the goal,
an effect which depends on the preferential motion direction of the neurons, it
would thus be interesting to see whether the activity of groups of neurons within
cortical regions responsible for reaching movements respects this correlation.

Behavioral Responses to Multisensory Conflicts

In this modeling study, two behavioral experiments were proposed and sim-
ulated. In the first experiment, the model was requested to perform a reaching
task, while relying on proprioceptive and visual feedback signals in order to
estimate its current state. In this apparently simple task, a bias in the visual
feedback was introduced which produced conflicts in the multisensory integra-
tion process. Simulation results have shown that below a certain amount of
bias, the state perceived by the model consists of a mixture of both sensory
information, indicating that, despite of their divergence, both inputs were still
considered similar. However, above a certain threshold, the incongruent visual
feedback was progressively getting inhibited during the course of the movement.
At the end of the trial, the internal state of the system was finally relying only
on proprioceptive information. This allowed the model to perform the task
correctly. This general behavioral effect is concordant with results obtained
in experimental studies which reported that under a certain discrepancy level,
multiple sources of information are unconsciously merged together, while above,
a conscious monitoring of the sensed discrepancy allows humans to change their
control strategy accordingly (Fourneret & Jeannerod, 1998; Slachevsky et al.,
2001).
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In this experiment, the breadth of the internal representation of the system
was also systematically varied. The analysis of the effect produced by this
parameter on the discrimination threshold showed that the latter grows almost
linearly with the unreliability of the sensory representation3. Interestingly, this
may bring one to postulate that the sensitivity of the discrimination process as
observed in the related experiments may be less accurate in children than it is in
adults. Indeed, the neural representation of spatial location has been suggested
to become more precise along developmental stages (Schutte et al., 2003).

Finally, the first experiment did not address the effect of attentional pro-
cesses. Indeed, since the instructed task was to reach for the target in pro-
prioceptive terms, one may argue that humans may simply inhibit the visual
feedback signal and always succeed in the task. However, several behavioral ex-
periments have shown that the inhibition of visual responses is hard, and that
interferences are still observed even when subjects are aware that visual informa-
tion is purely distractive in nature (Simon & Berbaum, 1990; Kilner et al., 2003;
Bertenthal et al., 2006). Nevertheless, it is rational to consider that the strength
of the visual feedback can be slightly inhibited by a top-down modulation pro-
cess. In such a case, by extension to the analysis of the integration model given
in Section 7.3.4, an interfering signal with a smaller amplitude should affect the
integration process to a lesser extent. Therefore, by consciously trying to avoid
paying attention to the visual feedback, the final distance between the location
of the actual movement and that of the target, as well as the discrimination
threshold may be reduced.

Interferences during Simultaneous Movement Execution and Observation

In the second experiment, the question as to how interferences on one’s
own movements are produced while observing another individual which is also
moving was addressed. With respect to the related experimental studies which
have reported this effect (Kilner et al., 2003; Chaminade et al., 2005), this work
tries to go one step further, first by considering the possible factors which are
responsible for this behavioral effect, and then by offering model predictions to
be compared to real experimental data. Indeed, these experimental studies have
only considered the movement variance as a measure of the interferences, which
does not provide much information as to which factors are effectively influencing
this behavioral property.

In this work, in addition to have reproduced the increase of movement vari-
ability in conflicting situations, three hypotheses related to the nature of the
visual signals interfering with the internal representation of movements were
suggested. The first two hypotheses consider that automatic imitative behav-
iors tend to make one’s own body to match either the position or the velocity of

3It has been suggested that the breadth of the sensitivity profile of neurons is inversely
proportional to the reliability of the information they convey (Pouget et al., 2003)
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the observed individual in a body-centered frame of reference4. The third hy-
pothesis assumes that interferences are produced by the integration of self- and
others- related signals within the same neural substrate. Simulation results then
showed that these three forms of interfering signals produce different stereotypi-
cal interference patterns. While the reported patterns in the first two conditions
highly resemble the observed movement, that in the third condition is clearly
different. Since the representation of others’ movements interferes with one’s
own self representation, instead of mimicking the experimenter’s movements,
the recorded trajectory reflects counteracting forces to bring the perceived state
back to the goal position.

Further, the effect of the velocity of the observed movement was tested
against these three conditions. Interestingly, the third hypothesis predicts, in
contrast to the other ones, that the amplitude of the interference should decrease
with increasing velocity. In addition, the strength of interfering input to the sys-
tem was also systematically varied. In relation to neurobiology, this parameter
could be seen as the attentional level that is focused on the observed motion.
As could have been expected, it increases the amplitude of the interferences in
all conditions. However, in addition to the hypothesis that this parameters may
represent an attentional level, one may also suggest that this parameter may also
reflect how much the observer identifies himself/herself with the experimenter.
Indeed, it has been shown that arm movements performed by a robotic arm does
not seem to produce interferences (Kilner et al., 2003). Nevertheless, in a sub-
sequent experiment, Chaminade et al. (2005) showed that the level of similarity
between the movements performed by a humanoid robot and those performed by
real humans influences the amount of interference. Thus, this may suggests that
the more biological observed movements are, the more one sensorimotor system
gets excited, and hence, the more interferences are produced. This behavioral
characteristic may thus be used to help determine the visual and neural factors
that influence one’s own movements. Moreover, this parameter may also be
affected experimentally by influencing the observer’s perception of the observed
body as if it was actually belonging to him/her, and as if he/she was actually
controlling it. This artefact on the sense of agency of the observer can be pro-
duced by means of the rubber-hand illusion which is an established method for
manipulating the sense of body ownership (Schütz-Bosbach, Mancini, Aglioti,
& Haggard, 2006).

Importantly, it should be mentioned that, these three hypotheses are not
exclusive. Indeed, it is even more probable that all the considered factors par-
ticipate in the interfering process. It would however be interesting to quantify
experimentally whether human responses to conflicting movements could be de-
composed into several independent components such as those described here,

4In order to avoid considering possible conflicts in the imitative strategies such as those
described in Chapter 6, the experimental setup was chosen so that the response of these
strategies, i.e., mirror or anatomical imitation, is always congruent with the other.
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and also how the velocity of observed movements may affects the interferences.
This would deepen our understanding of the neural mechanisms and brain path-
ways responsible for automatic imitative behaviors. Indeed, as will be described
below, brain regions can be associated to the presented model.

Cortical Routes

Finally, several associations can be suggested between the parts of the model
and cortical regions. First, according to Miall (2003), the computations respon-
sible for transforming goal locations into motor commands, i.e., inverse compu-
tations, are produced in the brain along two separate pathways: one along a
cortico-cortical route from the posterior parietal cortex to the ventral premo-
tor cortex, and the other through the cerebellum. Conversely, the predictive
computations are suggested to be processed along the reverse direction. Miall
(2003) does not clearly mention specific regions where each computation occurs
but rather brain pathways along which they are processed. This suggests that,
instead of trying to separate the forward and inverse processes into different
brain regions, single brain regions may simultaneously be responsible for both
computations. Consequently, the system controlling motor actions may in fact
be distributed across the whole brain, where each sub-regions could be in charge
of computing action commands related to the sensory inputs it receives while si-
multaneously maintaining a coherent representation of that multisensory state.
An example of functional cognitive model which considers this paired inverse
and forward network to be localized within a single brain area was proposed by
Oztop et al. (2005). They suggest that both computations occur in monkey area
F5. But nevertheless, they also propose a separation of these two processes into
two known subclasses of F5 neurons, i.e., the canonical and the mirror neurons.
While canonical neurons may encode how an action should be performed in mo-
tor terms, the mirror neurons may translate this information into a multisensory
representation useful for monitoring that action (Oztop et al., 2005). The com-
putational modeling approach described here is in line with this hypothesis of a
gradual computation of forward and inverse commands across brain pathways.
Indeed, the proposed network is very compact and simultaneously computes
commands and estimates their consequences. Moreover, it is important to note
that the forward and inverse network proposed here may be reduced to a single
network with the help of several technical modifications. However, the dynamics
of the system was considered to be more easily describable in two parts.

As mentioned above, one important computational property brought to light
by the present study, is that this neural field model can discriminate self-
generated movements from those produced by others. This property naturally
emerges from the competition between the network’s intrinsic dynamics with the
sensory inputs it receives. While compatible inputs are enhanced, incompatible
ones get inhibited. As a consequence, this system can simultaneously integrate
sensory information coming from multiple sensory source, while selecting those
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that are coherent with self motions. A link between this model and the brain
areas responsible for discrimination between self and others is then discussed.
As described by several neurophysiological studies, one important brain area
involved in this process is the right tempo-parietal junction (rTPJ). This area
is reciprocally connected with the parietal cortex known to represent the body
schema, i.e., the state of the body (Berlucchi & Aglioti, 1997; Farrer & Frith,
2002). In addition, since this area also receives the information related potential
action goals, it can thus also represents the acting body in relation to its envi-
ronment. Furthermore, rTPJ is also suggested to receive visual inputs related
to observed bodies, including one’s own body, from the extra-striate body area
(EBA) (Downing et al., 2001; Astafiev et al., 2004). Therefore, rTPJ is an ideal
candidate to be the area which performs multisensory integration for discrim-
inating between self- and others-related visual feedback, and subsequently, to
implement the neural network associated with the forward model proposed in
this study. Indeed, as suggested by Decety and Sommerville (2003), a method
for achieving this discrimination is to compare the sensory outcomes with those
predicted by a forward model. Importantly, the neural network described here
is capable of performing both operations simultaneously.
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Summary

This chapter investigated the neural mechanisms responsible for multisen-
sory integration and for discriminating visual feedback signals caused by self-
generated movements as opposed to those generated by other individuals. The
neural model is an extension of that presented in Chapter 7, which was itself ca-
pable of integrating velocity commands for predicting their outcome. The neural
network in this chapter, when coupled with that described in Chapter 7, resulted
in a simple coupled inverse and forward controller. This model is simultaneously
capable of generating movement commands, merging multisensory information,
and keeping its internal representation coherent with the predicted consequence
of self-generated movements. This suggests that the brain may, by means of the
same neural structure, combine a representation of others-generated motions
with that of self-generated motions while still being capable of discriminating
between the two sets of actions.

The model was also tested against two experiments derived from two real
behavioral studies. The first simulation study showed that the model can qual-
itatively account for how humans control movements when proprioceptive and
visual feedback conflict, i.e., when an artificial bias is applied to one modality.
Below a certain discrepancy level, both sensory signals are treated similarly,
while above that level the signal with a non-predictable behavior is suppressed.
In the second experiment, the same model was tested against an interference
paradigm where movement execution and movement observation occur simul-
taneously. There were several hypotheses concerning how the visual informa-
tion associated with the movements of others interferes with normal behavior.
Simulations demonstrated that, in all cases, the model reproduced the inter-
ference effect as reported experimentally: movement variability increased when
observing others. By investigating which of the movement parameters are in-
ducing interferences, this work proposed several new experimental predictions.
If tested, these predictions would help better understand the neural mechanisms
underlying the multisensory representation of the self, as well as the influence
of the representation of others.

This chapter concludes the description of the work contained in this thesis.
Several neural models describing either specialized circuits or cortical networks
involved in the brain processes of imitation were developed. Although these
models were separately capable of reproducing neurophysiological and behav-
ioral data, each modeling study was restricted to modeling only a subpart of
the cortical network responsible for imitation. A unified and global view of the
brain - in which the specific neural networks developed here may be embedded
- remains to be provided. This synthesis will be described in the next chapter,
which will also discuss the contributions of this thesis.
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Chapter 9

Synthesis: Toward a

Unified Cortical Model of

Imitation

This chapter begins with a rapid summary of the work accomplished in this
thesis along with its principal contributions. A synthesis based on a high-level
model of brain organization will then be presented in order to provide a general
overview of the modeling studies described across this dissertation, as well as
the cortical mechanisms and pathways of imitation in general.

9.1 Contributions of this Thesis

This thesis aimed at shedding some light on our understanding of several
important neural mechanisms and cortical pathways related to human imitative
behaviors by means of neural modeling studies. The key computational issues
which drove this thesis concerned the neural mechanisms responsible for the
way the visual representation of other individuals is changed into a frame of
reference useful for imitation, and for the integration of this representation of
others into the representation of one’s own movements. How these processes
influence human behaviors were discussed along the development of the neural
models which can account for these cognitive abilities. In particular, this work
sought: the cortical mechanisms and pathways which are responsible for the
behavioral expression of the ideomotor principle; the existence of competitive
interactions between different imitative strategies; and, finally, the ability to
discriminate between self-generated movements and those produced by others.

This work started with a computational investigation of the cortical routes
involved in automatic imitative behaviors. It mainly provided experimental
predictions of two models which suggest, respectively, that imitative behav-
iors are either primarily mediated by a high-level cognitive decisional process
or by a direct sensorimotor pathway. Since this study assumed that observed
and self-generated movements are encoded within the same frame of reference,
several biologically plausible neural mechanisms of frame of reference transfor-
mations were developed in order for this mapping to be possible. Two different
mechanisms were proposed to direct the neural processes of sensorimotor trans-
formations involving proprioceptive and visual modalities, respectively. Fur-
thermore, in order to relate these transformations to human behavioral data, a
neural model was developed to propose how spatial and anatomical imitative
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strategies are encoded and interact. An experimental paradigm along with the
predictions of the model were presented so as to validate or refute the working
hypotheses of this modeling study. Next, since the brain has to integrate the
information related to the movements of others into the representation of one’s
own movements, while simultaneously keeping track of the ownership of sensory
information, a neural model capable of discriminating between these two sets
of sensory information has been developed. By predicting the consequences of
one’s own movements, the competitive dynamics of the model can then select
which sensory input is actually self-controlled. In order to describe the expres-
sion of this neural mechanism on human behaviors, a neural model capable of
controlling and monitoring the execution of movements was tested against two
experiments. These addressed the processes of multisensory integration: one
case where biases were introduced on visual feedback, and one where movement
observation and movement execution were simultaneous. This study also ana-
lyzed the possible components of others’ movements which could be a source of
interferences on one’s own movements, and thus, it provides predictions which,
if compared to real behavioral data, could give new insights into the neural
mechanisms and cortical pathways mediating imitative behaviors.

Although all these models were capable of reproducing behavioral data as
well as providing new experimental predictions, one will have to relate these
models in order to provide a global picture of the cortical routes responsible for
imitation. Thus, a synthetic model of brain organization is presented in this
chapter. Importantly, the computational models developed in this thesis will be
shown to correspond to fundamental building blocks of this model. In addition,
this model will also highlight the numerous streams of information processing
which are involved in imitation. Finally, based on these cortical pathways,
the contributions of the developed models of human imitative behaviors on the
deciphering of the cortical routes of imitation will be given.

9.2 Toward a Unified Cortical Model

Along the development of the computational models presented in this the-
sis, a global model of brain architecture has emerged. Although this idea was
not explored as much as it could have been, it nevertheless appeared to be an
interesting model via which the various parts of this work could be unified. In
addition, since each modeling study of this thesis focused on a precise topic, it
is important to go one step further in order to provide a global description as
to how they contribute to a better understanding of the neural mechanisms and
cortical pathways involved in imitation and related behaviors.

The cortical model that is presented next is based on the brain as a highly
distributed system, not only at the level of small cortical ensembles, but also at
the cortical level. The core of the model consists of a complete representation of
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the body encoded along a gradient of reference frames. Three instances of this
representation are respectively associated with large portions of the parietal,
premotor and temporal cortices. These cortical areas are assumed to process
a representation of the body and its interactions with objects in multisensory,
motor and visual terms, respectively. Importantly, by considering these three
cortices simultaneously, the model naturally encompasses the neural pathways
of imitation.

9.2.1 Cortical Organization along Multiple Frames

of Reference

The neural representation of one’s own body is known to be widely dis-
tributed along multiple frames of reference (Johnson et al., 1996; Burnod et al.,
1999; Battaglia-Mayer et al., 2003; Avilllac et al., 2005). This property primar-
ily facilitates the combination of multisensory and motor information that are
intrinsically encoded within different reference frames. Multisensory integra-
tion processes usually result in coherent representations. Moreover, by acting
on multiple coordinate frames such as body part-centered or goal-centered, the
control over the body is simplified (Rizzolatti et al., 1990; Burnod et al., 1999;
Battaglia-Mayer et al., 2003). With respect to this neurophysiological evidence,
a theoretical model has already been proposed by Burnod et al. (1999), who
proposed a model of the parieto-frontal brain network responsible for control-
ling reaching movements in which the neural representation of the body is dis-
tributed along a gradient of reference frames. The model, which is presented
here, extends the above mentioned model by including abstract multisensory
representations such as goal-directed ones, and areas of the temporal cortex in-
volved in the visual recognition of bodies and objects. As will be shown later,
these additions make it possible to consider the cortical areas and pathways
related to imitation, such as those described in this thesis. But first, the next
paragraphs describe how bodies and objects could be represented in multiple
frames of reference within a multisensory and hierarchical organization.

A Hierarchical Representation of Frames of Reference in the Cortex

A simple kinematic chain representing one of the upper sides of the body
is considered in order to show how to gradually merge visual and propriocep-
tive information together. It starts from the eyes and then continues: head,
torso, upper arm, forearm, hand and fingers. As shown in Figure 9.1, the visual
representation of the body parts can be displayed horizontally in a sequence of
representations in an eye-centered frame of reference. Then, by proprioception,
the angle formed by the eyes in their orbit with respect to the head and the
distance between the head and the eyes is known. Thus, the representation of
each body part can be transformed into a head-centered representation, which,
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Figure 9.1: A hierarchical representation of frames of reference for representing the
body and objects is shown. It encompasses both visual and proprioceptive represen-
tation, i.e., viewer-centered and local representations. Each block within the white
triangle corresponds to the representation of a body part (horizontal axis) in a frame
of reference centered on another body part (vertical axis). This white triangle can thus
be associated the representation of the body. The gray extending area on the right of
the body representation corresponds to the representation of an object in all possible
frames of reference. Since the small area at the bottom of this gray column is an ob-
ject representation in an object-centered reference frame, it corresponds to an invariant
representation of objects. Finally, on top of the figure, in parallel to the eye-centered
representation, a world-centered representation of the body in its environment can be
found.

in turn, can be represented by the second row in Figure 9.1. Importantly, this
top-down relationship is reversible. Furthermore, A complete hierarchical rep-
resentation of the body within multiple frames of reference can be constructed
following the same reasoning for each other body parts. As shown in Figure 9.1,
this representation resembles a triangle where each side corresponds respectively
to a purely viewer-centered representation of the body, a local representation
of each body part with respect to its adjacent ones, and, finally, a representa-
tion of the end-effector in the frame of reference of all the other body-parts.
From this structure, any information related to a body part can be transferred
sequentially into any reference frame.

In addition, a complete description of an object in all the reference frames
can be obtained by considering objects as extensions of the kinematic chain. Im-
portantly, since the way objects are manipulated can encoded, one may consider
this extension of the body representation as a goal-centered representation. This
model thus suggests that goal-centered representations naturally emerge from a
gradual combination of proprioceptive and visual sensory modalities into a co-
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herent and complete representation of the body, i.e., the body schema. Next, as
indicated by the small triangle at the bottom of the object-related structure, an
invariant representation of objects such as those found in the inferotemporal cor-
tex (Booth & Rolls, 1998) can be produced. Indeed, in an object-centered frame
of reference, the object representation is invariant. Moreover, since neural rep-
resentations of the body in space also exist (Snyder et al., 1998; Redish, 1999),
a world-centered representation can also be constructed. However, because the
vestibular signals associated with this form of representation originate from sen-
sors located in the head, this world-centered representation must be considered
parallel to that in eye-centered coordinates.

Contributions of this Thesis

In order to process the information conveyed by each neural representation,
transformations across frames of reference are necessary. Chapter 5 of this the-
sis presented plausible mechanisms for sensorimotor mappings between distinct
frames of reference. This modeling study contributed to the understanding and
to the modeling of large-scale cortical representations, by proposing models for
transferring information between brain areas sharing similar information within
different reference frames. In the next section, we will show how such a hier-
archical model of frame of reference transformations can be embedded in an
integrated and synthetic view of the brain organization to account for all the
cortical pathways activated during imitative and related behaviors.

9.2.2 The Fronto-Parieto-Temporal Model

This section presents the fronto-parieto-temporal model, which represents
the global organization of the cortex in terms of frames of reference. As shown
in Figure 9.2, it is composed of three instances of the hierarchical structure
described above. Each instance, or cortical schema, roughly incorporates the
brain areas located within the parietal cortex, the premotor and motor cortices,
and the temporal cortex. Respectively, they are assumed to be involved in the
processing of the multisensory, motor and visual representation of the body and
its possible relations with objects. In agreement with neurophysiological data,
Figure 9.2 also shows how cortical areas are associated with these hierarchical
structures. This segregation is not strict but smooth, i.e., a brain region can
be mostly tuned to a given frame of reference, but a gradual sensitivity to the
neighboring reference frames and body parts is also possible. Furthermore, the
arrangement of the hierarchical structures reflects that of the cortex, where the
axes of symmetry correspond to the central sulcus and the sylvian fissure. This
visual representation allows a quasi-direct correspondence between the informa-
tion pathways of this model and those of the cortex.

The principal connectivity patterns across brain areas are superimposed on
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Figure 9.2: This figure presents the Parieto-Fronto-Temporal Model. It represents
the relationships between the brain areas with respect to the frame of reference in
which they encode information. The model is composed of three schemas. The pari-
etal schema comprises the parietal areas responsible for a multisensory and distributed
representation of the self. The frontal schema contains the premotor and motor regions
in charge of the control of the body into multiple reference frames. Finally, temporal
schema includes the complex visual recognition areas which represent the other in-
dividuals as well as the environment. The gray arrows across the schemas indicates
known connectivity patterns between cortical regions.

this figure. In addition to the connectivity between neighboring areas - which for
clarity were not drawn - the connectivity patterns across the parieto-frontal and
parieto-temporal networks show links between areas which represent information
of similar body parts in similar frames of reference. However, the connectivity
across the parieto-temporal network is relatively weak. Indeed, little evidence,
at least in monkeys, suggests the existence of important direct projections from
the temporal cortex to the parietal cortex.

Several important brain areas were not assigned to a specific cortical schema
of the model. These areas belong to two different categories. First, the primary
visual areas which process only basic visual features cannot be associated with
any of the cortical schemata. Secondly, since prefrontal areas are believed to
process contextual information for decision-making and for the high-level control
of sensorimotor streams, they embrace the whole structure rather than being
part of it.

Contributions of this Thesis

In this model of cortical organization, each cortical region represents a spe-
cific body-part or object in a specific frame of reference. However, the cor-
tex does not only represent static information. It also produces actions which
can have consequences on this internal representation of the body and envi-
ronment. Thus, neural processes in charge of producing movements, predicting
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their consequences while maintaining a coherent internal representation have
to be considered. Importantly, plausible neural models of these processes have
been developed along the modeling studies presented in Chapters 7 and 8 of
this thesis.

These modeled neural mechanisms can be associated with those that are
required by each cortical schema of the fronto-parieto-temporal model. For
instance, the neural structure described in Chapter 8, which is capable of gener-
ating goal-directed motion commands according to the state of the body, such
as the current position of the arm, may correspond to a general mechanism
by which the frontal schema produces motor commands. The neural structure
described in Chapter 7, which ensures coherence within a multisensory repre-
sentation of the body even in the presence of conflicting sensory signals, is a
fundamental component of the neural processing occurring within the parietal
schema. The frontal and parietal schemata are extensively interconnected. As
described in the experiments of Chapter 8, this interconnectedness allows the
frontal schema to have access to an accurate representation of the body, which
is constantly kept up to date by the parietal schema by means of the motor
efference copies received from the former. Finally, the neural mechanisms of
sensory prediction described in Chapter 7 can also be associated with the func-
tion of the temporal schema. Indeed, although the temporal areas are usually
thought of being involved only in the processing of visual information, it has
also been shown that those can play a role in predicting the consequences of self
body motion. To conclude, the neural mechanisms developed in Chapters 5, 7
and 8 of this thesis, form fundamental components of a global model of brain
organization and operation.

9.2.3 The Cortical Routes Involved in Imitation

It must by now be clear that human imitative behavior results from the inter-
actions across several important cortical pathways. In this section, we will draw
those pathways onto our fronto-parieto-temporal model and highlight several
of their fundamental characteristics and role in driving imitation in humans.
Then, the contributions of the modeling studies of this thesis which directly
address imitative behaviors will be also be described in light of this model.

Goal-directed Imitation

Let us first consider the cortical routes responsible for goal-directed imita-
tion. The most important areas usually associated with this behavior belong to
the monkey mirror system. These are: the parietal area 7b/PF included in the
intra-parietal sulcus (IPS), the area F5 located in the ventral premotor cortex
(PMv), and the ventral part of the superior temporal sulcus (STSva). Basically,
these areas are thought to compute possible motor responses to objects or goals
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Figure 9.3: These figures illustrate the major cortical pathways which may be in-
volved in a) goal-directed imitation, and b) the imitative of intransitive movements.
Both figures were drawn according to the brain pathways described in Section 2.3.3
and shown in Figures 2.12 and 2.13. On this model, a clear cut between the areas
involved in each imitative behavior can be observed.

and to associate the movements of others with these responses (Rizzolatti et al.,
2001). As reported in Figure 9.2 and 9.3a, these three areas encode hand-object
relationships in a goal-centered frame of reference. Moreover, because of their
distinct roles, they are located on a different cortical schema. Interestingly, de-
spite their distance on the cortical surface (Figure 2.5), this common property
could explain the existence of strong reciprocal projections between them, pro-
jections which have led to the development of a goal-directed mirror system in
both monkeys and humans (Fogassi & Gallese, 2002).

Goal-directed imitation pathways also involve two parallel streams. The
first route flows along the parieto-prefrontal network, which represents the act-
ing body and is purely sensorimotor (Johnson et al., 1996). The second route is
a more cognitive pathway in the sense that reasoning centers are involved. This
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stream flows along the temporo-frontal network and recruits both visual recog-
nition areas such as the inferotemporal cortex (IT) and STS (Booth & Rolls,
1998; Jellema et al., 2004) and context-dependent decisional areas located within
the lateral prefrontal cortex (LPFC) (Sakagami et al., 2006). While the former
stream seems to be responsible for rapid and automatic imitative responses, the
latter route is involved in controlling the overt production of these responses
(Lhermite et al., 1986; Shimomura & Mori, 1998).

Imitation of Intransitive Movements

As illustrated in Figure 9.3b, the brain pathways mediating the imitation
of intransitive actions recruit different cortical regions and routes than those
in charge of goal-directed imitation. A clear distinction is evident between the
brain areas involved in each imitative behavior. This separation shows that
while goal-directed behaviors engage primarily goal-centered representations,
intransitive actions recruit more body-centered ones. Moreover, just as the
pathways of goal-directed imitation, the cortical routes mediating the imitation
of intransitive movements are also separated into two major streams. While
the dorsal route integrates the representation of others’ movements into one’s
own sensorimotor representation of movements, the ventral route is instead con-
cerned with the precise analysis of observed movements and with the control of
overt movement execution.

Contributions of the Cortical Models Developed in this Thesis

By means of the fronto-parieto-temporal model, a clear separation between
the routes mediating goal-directed and intransitive imitation has been put for-
ward. However, because of the nature of cortical organization, which exhibits
a gradient of regions sharing similar information encoded within similar frames
of reference, these pathways should not be seen as distinct as they have often
been considered in the literature. As will be shown next, the modeling studies
of this thesis which addressed the cortical networks of imitation mostly focused
on the possible links between these pathways.

Automatic Imitative Behaviors

In Chapter 4, the neural information pathways responsible for imitative be-
haviors in response to the observation of intransitive actions were investigated.
In particular, an interference paradigm was used in order to produce conflicts
between the cortical processes responsible, respectively, for controlling actions in
response to non-biological visual cues, and for intransitive imitative behaviors.
Figure 9.4 shows the cortical routes considered in this study. While the former
process was suggested to flow along the goal-centered visuomotor pathway for
action, the latter was thought to involve the imitative pathways for intransitive

247



SI-II

MST/MT

V1-V4

M1

LPFC

IT

PMv IPS

APFC

TPJ

STS

SMA

PMd

PPC

EBA

Imitative and stimulus-response pathways
Hypothetical pathways
Motor execution pathway (not modeled)

a b

Figure 9.4: The cortical pathways modeled in the study described in Chapter 4 are
shown on the proposed model of brain organization. This study asked for the existence
of the cortical links shown by the labels (a) and (b) which might convey information
related to automatic and intransitive imitative behaviors.

actions. This work primarily investigated the precise role of the dorsal senso-
rimotor route in facilitating motor execution. Does it influence the decisional
process occurring in the lateral prefrontal cortex (LPFC), or does it influence
directly the motor programs of the ventral premotor cortex (PMv)? As pro-
posed by this study, one method to clarify this issue would be to perform the
behavioral experiment developed in Section 4.3.2, which is suggested to increase
the computational load in LPFC.

Imitative Strategies

The study presented in Chapter 6 investigated the interference effects that
were reported between anatomical and spatial imitative strategies. In particu-
lar, the developed model suggested the existence of two distinct cortical circuits,
one for each transformation, whose results are then merged within a selection
network. These two circuits may be processed in parallel within the same re-
gions: the posterior parietal cortex (PPC) and the supplementary motor area
(SMA) (Koski et al., 2003).

However, despite this attractive and simple hypothesis, one may also en-
vision an alternative, which suggests the existence of competitive interactions
between the goal-directed and the intransitive imitative route. Indeed, goal-
directed actions usually imply the respect of the spatial relationship between
targets and the direction of movements. Thus, as illustrated in Figure 9.5, the
corresponding pathway recruiting STS, IPS and PMv could be responsible for
spatial imitation. In contrast, anatomical imitation may instead involve the
network formed by EBA, STS and the dorsal part of the parietal cortex (PPC),
i.e., the intransitive imitative route. To recall, PPC encompasses a faithful rep-
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Figure 9.5: One hypothetical cortical pathway modeled in the study described in
Chapter 6 is shown along the proposed model of brain organization. This hypothesis
suggests that specular and anatomical imitation are grounded on the separate path-
ways for goal-directed and intransitive imitation. Cortical connectivity which could
be at the origin of the behavioral interferences produced by these two strategies are
also shown.

resentation of the body configuration. If this two-route hypothesis was true,
interfering cortical pathways linking transitive and intransitive imitative path-
ways should exist in either the frontal cortex, the parietal cortex, or both. This
may consequently explain the increased activation of PPC and SMA which was
reported by an fMRI study under such conditions (Koski et al., 2003). There-
fore, since this hypothesis and the one described in the previous paragraph are
both plausible, further computational and experimental studies are needed in
order to disentangle these two hypotheses.

Multisensory Integration and Discrimination

In Chapter 8, two experiments investigated the neural processes underlying
the integration of multisensory signals within the representation of one’s own
body. The cortical pathways associated with the model of the first experiment,
which focused on the human ability to detect discrepancies between visual and
proprioceptive feedback, are provided in Figure 9.6a. Since the aim of the task
was to reach for a target, the goal-directed route involving the intraparietal sul-
cus (IPS) and PMv is considered for the production of motor commands. Then,
the efferent copies are sent back to the parietal area PPC and TPJ, which inte-
grate them and predict their consequences within the body representation. In
parallel, proprioceptive and visual feedback are processed and relayed by the
somatosensory area (SI) and EBA, respectively. Finally, the integration of the
latter signal is putatively gated by TPJ, which, in case of a large discrepancy,
inhibits this input. In addition, TPJ may also inform the frontal cortex, which
can, if necessary, modify the control strategy. The integration of multisensory
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Figure 9.6: The modeling studies described in Chapter 8 used the same neural ar-
chitecture in order to address the mechanisms of multisensory integration. They also
allow the discrimination between self and others. a) It is suggested that the cortical
pathways are responsible of multisensory integration in the experiment described in
Section 8.3.1 are shown. In this figure, the functions assigned to the cortical areas
correspond to those attributed to the network model given in Figure 8.6. b) The
cortical pathways might be responsible for discriminating between visual inputs re-
lated to self and others are shown. In Section 8.3.2, several hypotheses concerning the
components of observed movements which may be involved in imitative interferences
were proposed. Their associated brain pathways are shown here by the labels (a)-(c)
which correspond to those given in Figure 8.6.

signals is clearly supposed to be gated by TPJ, which is in line with current neu-
rophysiological data (Blanke et al., 2002; Decety & Sommerville, 2003; Decety
& Chaminade, 2003).

The second experiment focused on how the observation of movements per-
formed by other individuals is integrated into the representation of one’s own
body. Complementarily, it also addressed the cognitive ability to discriminate
between self-generated movements and those produced by others. As shown in
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Figure 9.6b, since the task of this experiment concerned arm movements, the
dorsal intransitive pathway is activated. This pathway includes TPJ and SMA,
which are involved in the integration of multisensory information for monitor-
ing the representation of the body, and in the generation of motor commands,
respectively. Moreover, the prefrontal cortex is also recruited to decide which
movement to execute.

Finally, this study also raised three hypotheses concerning how observed
movements may influence one’s own movements. The pathways associated with
each of these hypotheses are depicted in Figure 9.6b. First, if the interferences
are produced by the location of the demonstrator’s hand, the activation of the
antero-medial frontal cortex (AMFC), which represents movement goals, should
be increased. Second, if the interferences are driven by the dynamics of observed
movements, conflicts within SMA should appear. Third, if the visual represen-
tation of others’ movements is integrated like that of self-generated movements,
conflicts at the level of TPJ should be observed. Lastly, it is important to
note that these three hypotheses are not mutually exclusive. Indeed, it seems
more likely that all corresponding pathways influence behavior. As mentioned
in Chapter 8, it would be interesting to measure the level of interference that
each of these pathways has on imitative behaviors.

9.3 Discussion

In this chapter, a global and integrated view of the cortical processes and
pathways responsible for imitative behaviors has been presented. In particular,
the described model suggests that a distributed representation of the body across
different frames of reference may be a key characteristic of brain organization.
This property may have significant consequences on our understanding of the
imitation mechanisms.

The core of the model consists of a complete and coherent representation
of the body, encoded along a gradient of reference frames. Interestingly, goal-
centered representations emerge naturally from the gradual combination of the
information conveyed by both proprioceptive and visual sensory modalities. Fur-
thermore, three interconnected instances of such a complete representation were
associated with large portions of the parietal, premotor and temporal cortices,
where each instance is respectively encoding the multisensory body schema and
its possible interactions with objects, its control of movement, and the visual
processing of the environment. By integrating all the necessary cortical areas
thought to be in charge of the sensorimotor control of the body, parallels were
drawn between this model and the cortical processes and pathways involved in
imitation.

The cortical routes commonly suggested to mediate goal-directed and intran-
sitive imitation strategies were shown to recruit different networks of brain areas.
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While goal-directed imitation primarily involves cortical regions representing
goal-centered information, intransitive imitation involves more body-centered
ones. Then, in showing which pathways were addressed by the modeling studies
of this thesis, the existence of links between the cortical areas involved in goal-
directed and intransitive imitation have been put forward. These links clearly
suggest that these imitative behaviors are not as distinctively processed in the
brain, as is commonly believed.

Several supplementary arguments to this proposal can also be given. Firstly,
sensorimotor processing has clearly been shown to recruit large portions of com-
plementary brain areas along the fronto-parietal cortex. Since this cognitive
process and imitation are tightly linked, imitation may also involve this com-
plete network. Secondly, the intrinsic nature of cortical organization, highlighted
by the fronto-parieto-temporal model, is endowed with many interconnected re-
gions representing information which is transferred along a gradient of frames of
reference, such as from body-centered representations to goal-centered represen-
tations and vice versa. This intrinsic organization makes obvious the existence
of links between goal-directed and intransitive imitative pathways.

Therefore, this involvement of the whole sensorimotor brain in the processing
of imitative behaviors may explain why it has been so difficult to identify only
a small set of brain regions which precisely mediate imitation. This hypothesis
may, however, raise a question related to the behavioral differences reported
between humans and monkeys. Indeed, similarly to humans, monkeys have a
highly developed cortical circuitry for sensorimotor processing, and also have
strong abilities to recognize the actions of their conspecifics. Why, then, can’t
they display as much imitative skill as humans do?

Monkeys Vs. Humans

Following from the description of the cortical pathways which mediate imita-
tive behaviors, a hypothesis related to the cortical differences between humans
and monkeys can be put forth. Monkeys may lack the connectivity from STS to
the dorsal part of the parietal cortex, potentially due to the lack of a homolo-
gous region to the human extra-striate body area (EBA). Indeed, EBA has been
suggested to represent body parts irrespective of the parts’ owner, whether they
belong to the self or to others (Ruby & Decety, 2001; Astafiev et al., 2004; Chan
et al., 2004). Therefore, a direct visuomotor mapping between the representa-
tion of others’ movements with one’s own internal representation seems to be a
key ingredient of human ability to imitate intransitive actions. In line with the
results of ethological studies (Tomasello et al., 1993; Whiten et al., 1991), this
hypothesis suggests that the cortical network responsible for human imitative
abilities extends that found in its ancestor, in particular by means of additional
connectivity patterns between temporal and parietal cortices. Therefore, the
putative lack of an intentional system for imitation in monkeys (Rizzolatti &
Luppino, 2001) should not be considered as the only reason by which they are
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not capable of true imitation. Monkeys may also lack cortical areas such as
EBA, as well as temporal-to-parietal connections between the regions process-
ing information in a body-centered frame of reference.
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Summary

In this chapter, a synthetic model of brain organization has been proposed,
namely, the fronto-parieto-temporal model. This model has laid the ground-
work for several important points related to the modeling studies accomplished
throughout this thesis. First of all, the model shows that the neural structures
described in Chapters 5, 7, and 8 provide keystones for the general under-
standing of both the organization of and the functioning of the cortex. This
model also provides a global description of the neural pathways responsible for
goal-directed and intransitive imitative behaviors in terms of the frames of refer-
ence recruited by both strategies. Then, although goal-directed and intransitive
movement pathways are usually considered distinct, the modeling studies de-
scribed in Chapters 4 and 6 proposed that cortical projections between these
routes do exist. Furthermore, the results presented in Chapter 8 suggest that the
processes of multisensory integration and discrimination for either goal-directed
or intransitive imitation seem to be mediated by the same set of parietal areas
which represent body information in visual terms. Finally, this chapter also
provides a global and integrated view on the cortical mechanisms and pathways
involved in imitative behaviors. The strong proposal raised is that imitation
should not be considered as recruiting specific brain areas, but rather the whole
sensorimotor cortex.

The next chapter provides a discussion related to the general limitations of
the approach followed in this thesis. It also develops future research directions
which could complement this work.
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Chapter 10

Limitations and Future

Work

With respect to the work accomplished throughout this thesis, several im-
portant limitations can be brought to light along with their possible

improvements. They are described next.

Granularity of the Modeling Approach

In this thesis, the dynamic neural field approach has been adopted in order
to model the neural mechanisms underlying imitation. An important advantage
of this methodology is that it allows an interesting trade-off between realistic
models of neurons and purely connectionist models. Indeed, while connectionist
models may not capture some of the important dynamical properties of neural
ensembles, the use of models of spiking neurons would certainly have put too
much complexity in the models, and thus, would have driven this thesis too far
away from its central objective.

Learning Issues

Although this approach has successfully allowed the modeling of several cor-
tical pathways responsible for imitative behaviors, the important issue concern-
ing the processes of learning neural representations and inter-cortical connectiv-
ity have not been tackled in this thesis. The neural structures and connectivity
patterns were always assumed fixed and known in advance. Nevertheless, this
lack is believed to not have a strong incidence on the predictions provided by
the presented modeling studies. Indeed, although imitation may be seen as
mandatorily requiring learning, the aspects of imitative behaviors addressed
here do not involve this cognitive skill. In particular, the focus was primarily
on automatic imitative behaviors which recruit cortical networks that are al-
ready structured and functioning. If the aim of this work would have been to
model either the developmental stages of imitation in children, or the processes
of learning by imitation, learning mechanisms would certainly have been central
to this thesis.

Still, this issue is fundamental, which explain the huge interest in learning
mechanisms from the computational neuroscience community. Indeed, compu-
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tational studies endowing neural fields with learning abilities have already been
described in the literature. For instance, it has been shown that the recurrent
connectivity patterns of neural fields could be built using learning rules based
on the Hebb’s rule (Zhang, 1996; Compte et al., 2000; Stringer et al., 2004). In
addition, both symmetric and asymmetric profiles of the synaptic weights could
also be learned, based on techniques derived from the principle of spike timing
dependent plasticity (Roberts, 1999; Melamed et al., 2004).

Another important reason why learning should be considered in future work,
is that it could allow the number of parameters to be extended, which can
be simultaneously encoded within a neural field without increasing its dimen-
sion. For instance, Meńard and Frezza-Buet (2005), by means of a mixture of
a Kohonen-based algorithm with a neural field, were able to show that associ-
ations between various high-dimensional sensory inputs and motor outputs can
be learned. However, this model is not capable of displaying the computational
properties that the studies developed in Chapters 7 and 8 have shown to be ex-
tremely useful for multisensory integration as well as for controlling movements.
Therefore, one may suggest that both models be integrated together, which may
be expected to increase the computational power of this class of models.

Dealing with Complexity

The modeling studies of this thesis that addressed the cortical networks in-
volved in imitation, considered relatively few internal and behavioral variables.
For instance, only mono-articular movements were used in order to keep the
models simple and tractable. In addition, these variables were also first re-
stricted to positional information, and then extended to velocity. This form
of encoding, by its attractive simplicity, has often been reported in the neu-
rophysiological and modeling literature, but a more complete system should
nevertheless take into account supplementary variables such as force and ac-
celeration, as well as supplementary body parts and articulations. Similarly,
more complex representations of visual stimuli should be considered, and in
particular, those that encode biological motions. Therefore, in order to consider
these visuomotor aspects of cortical processing, future work should attempt to
model how visual and motor representations can simultaneously be learned and
self-organized within compact neural ensembles.

Embodiment

Another limitation of this work is that the modeled systems are not em-
bodied. This was not made possible as control of complex body dynamics was
not considered together with the explicit recognition of biological motions. As
a simplification, system variables were calculated in a computer-generated en-
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vironment simulating only body kinematics. In addition, embodiment requires
a body, which is often materialized by means of a robotic platform. And be-
cause of the computational resources required to process the dynamics of high-
dimensional neural fields, real-time control of a complex robotic platform - such
as a humanoid robot - is hardly realistic. Nevertheless, the development of
hardware devices taking advantage of the distributed nature of these networks
might help endowing robots with bio-inspired cognitive abilities (Hahnloser,
Sarpeshkar, Mahowald, Douglas, & Seung, 2000).

Toward a Large-Scale Cortical Model

Another important limitation concerns the well-known existence of several
parallel processing loops in the brain. This thesis primarily considered feed-
forward processing pathways when addressing the cortical networks mediating
imitation. In order to resolve this issue, one may consider implementing the
fronto-parieto-temporal model described in Section 9.2.2 which is distributed
and recurrent by nature. In addition, this framework has been suggested to
incorporate an important set of the cortical pathways responsible for a large
palette of imitative behaviors. Furthermore, implementing this large scale model
also implies considering more system variables such as those needed to represent
complete kinematic chains. Therefore, additional imitative behaviors than those
described in this thesis could be modeled. For instance, the goal-directed nature
of imitation (Wohlschläger et al., 2003) could be investigated in more detail.

Furthermore, the fronto-parieto-temporal model also described three distinct
complete representation of bodies and their relation with the environment. Im-
portantly, it proposed a visual to motor gradient of neural representations flow-
ing from the temporal lobe, through the parietal one, up to the frontal cortex.
From this, one may imagine this gradient being an evolutionary solution to the
curse of dimensionality, by which the brain reduces the amount of information
that each cortical region should process simultaneously, while keeping a coher-
ent representation of the body in multiple and complimentary modalities. This
remains, however, to be investigated more extensively.

Finally, as reported in Section 2.3.4, an hemispheric specialization could also
be considered, where the left hemisphere would be more prone to process-shared
representations, whereas the right hemisphere would contain more information
focusing on self-representation (Barresi & Moore, 1996; Decety & Chaminade,
2003). Therefore, the development of a bi-hemispheric cortical model could also
provide more insights as to how one represents the self and the others, and by
extension, on the mechanisms of imitation. Indeed, shared representations are
only part of the complex neural processes mediating imitative behaviors, which
also recruit the sensorimotor cortex in its whole. In order not to confound
oneself with the others, it seems natural to have cortical regions restricted to
one’s own representation, whereas shared neural structures would be required
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to relate oneself with the others, or to represent others’ movements within one’s
own sensorimotor repertoire.

Developmental and Bio-Inspired Engineering Approaches

Building such a large-scale system could seem huge and difficult to handle.
Because of the large amount of neural representations and their connectivity
patterns, the complexity of the model can grow very fast. Consequently, the
system may become difficult to analyze. In addition, if learning abilities are
taken into account, its analysis may become even harder. Several solutions to
these problems may nevertheless be proposed. First, a developmental approach,
in which the size of the model could be progressively increased, may allow to
better track and understand its dynamics.

Furthermore, another approach might be to adopt a bio-inspired engineering-
based methodology. Importantly, this approach may be a good compromise to
understand the principles of cognitive processing while reducing the computa-
tional cost and the complexity that the neural field approach produces. For
example, bio-inspired engineering techniques have already been applied in order
to learn the kinematic chain of a robotic manipulator, i.e., its body schema,
across distributed and local representations of the body joints (Hersch, Sauser,
& Billard, 2007). In addition, in tasks where one has to imitate novel actions,
it appeared that taking advantage of information encoded within multiple ref-
erence frames is useful and even mandatory to allow an algorithm to reproduce
accurately actions involving the manipulation of several objects (Calinon et al.,
2007). Therefore, rather than only focusing on a particular approach to under-
stand how cognitive processes may lead to imitative abilities, one should instead
adopt a multidisciplinary philosophy for research. In such research, each sub-
field should participate, at its own level and provide coherent answers to the
important questions related to this field.

A Multidisciplinary Field of Research

In relation to this proposal, the last point which is worth mentioning is the
absence of real experimentations which could either confirm of refute the hy-
potheses raised throughout this thesis. Indeed, the approach which was adopted
here consisted first in developing neural models capable of replicating current
data related to the behavioral expression of imitative behaviors, and then in
drawing new hypotheses in order to propose new research directions. However,
as long as actual experiments are not performed on human subjects, it is hard
to proceed with hypotheses previously raised which were not validated. Al-
though this absence of results on the actual validity of the modeling hypotheses
may seem somewhat odd to the reader, the stance that was taken here was to
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propose model-based predictions and call interested people from the scientific
community to make the experiments and verify their validity. Indeed, model
predictions are often presented along with their experimental counterparts in
the scientific literature. However, this can cast some doubt on the methodology,
predictions or experimental results, which ever come first, are then difficult to
assess. Experimentalists and modelers basically follow the same ultimate goal,
but use different approaches. Thus by sharing the competencies of specialists
from both fields of research some of the bias always present may be removed.
In conclusion, one regret is that a collaborative experience with experimental-
ists, despite having certainly been a long-drawn-out job, might have been very
constructive and fruitful.
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Chapter 11

Conclusion

In this thesis, models of several neural mechanisms and cortical pathways
involved in imitative behaviors were developed. The major issues tackled

here included the brain mechanisms responsible for: a) ideomotor behaviors,
which are the overt expression of the influence of others’ actions on the quality
of one’s own performance; b) visuomotor transformations, which allow one to
map the movements of others to a coordinate system centered on one’s own
body; and c) multisensory integration, prediction and discrimination, which are
important for disambiguating the visual signals related to either the self or
others, and consequently, for distinguishing oneself from others. Along these
lines of research, the contributions of this thesis fall into two major categories.

First of all, this thesis contributes to a better understanding of the neural
mechanisms underlying human imitative behaviors. This work questioned the
hypothesis that sensorimotor pathways are directly responsible for automatic
imitative behaviors, by providing an alternative which puts forward the involve-
ment of decisional circuits located in the frontal cortex. In order to remove
all doubt, a novel experimental paradigm has been proposed along with model
predictions. Next, this work proposed that the neural processes of spatial and
anatomical imitation compete for the control of imitative movements. The re-
sults of this study showed that the human preference for spatial imitation may
be caused by the higher computational load required by the anatomical imita-
tion, and by the competitive interactions present between the two strategies.
Model predictions were provided for future verification of this hypothesis. This
work also developed a model of the mechanisms responsible for the integra-
tion of the representation of others’ movements into one’s own representation of
movements. Importantly, this study went beyond current behavioral studies as
it provided experimental predictions which could help elucidate how and where
in the brain the two representations interact and interfere with each other. Fi-
nally, in contrast to the neural models of imitation reported in the literature,
which usually focus only on small cortical networks, a large-scale model of imi-
tation - which encompasses the whole sensorimotor brain - has been proposed.
This model shows that the cortical pathways which mediate goal-directed and
intransitive imitation may not be as distinct as commonly believed. According
to this model, the behavioral differences reported between humans and mon-
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keys were suggested to be attributed to the existence, in humans, of stronger
connectivity patterns between the cortical areas respectively responsible for the
visual recognition of biological motion and for the representation of the self.

Secondly, this thesis contributes to the field of computational neuroscience by
providing new developments concerning the class of artificial neural networks
known as the neural fields. While investigating the possible mechanisms of
frame of reference transformations, in contrast to other models, this work paid
special attention to the amplitude of the signal conveyed by neural populations,
and then showed how errors arising from transferring this information could
be reduced and avoided. This work, inspired by related modeling studies, also
proposed a neural structure capable of modifying its internal dynamics to update
its internal representation by means of external commands. Importantly, since
this model was shown to exhibit preferential tuning to external inputs whose
dynamics are coherent with its own, this neural model has also been shown to be
capable of discriminating sensory inputs resulting from self-generated actions,
and thus capable of enforcing the coherence of multisensory representations.
Finally, the generality of these neural mechanisms devoted to the transformation
and integration of information suggests that these processes could be widespread
across the whole cerebral cortex.

To conclude, one hopes that the computational models and the hypotheses
raised throughout this thesis will inspire further research, and will consequently
help the scientific community to understand better the cognitive processes un-
derlying the human ability to imitate.

262



Appendix A

Technical and

Implementation Details

In this appendix, several additional useful information can be found. In the
first section, implementation details as to how quasi uniform distributions

of preferred directions could be obtained on a spherical surface are given. This
method mainly concerns the simulation results presented in Chapters 5, 6 and
8, where neural fields defined on a spherical surface were used as modeling tools.
In the second section, the detailed mathematical developments of the modeling
study presented in Chapter 7 are provided.

A.1 Spherical Representation

In order to simulate the neural fields in which the neural sensitivity, i.e., the
parameter space Γ, is defined on a spherical surface, a quasi uniform distribu-
tion of N preferred directions, where N corresponds to the number of neurons
within a population, has to be generated. An iterative algorithm, inspired by
the mechanism governing the self organizing maps (Kohonen, 1990) was devel-
oped. Indeed, in contrast to torus-like manifolds, where a regular distribution
of preferred directions is straightforward to produce, this is not the case for an
uniformly distributed set of unitary vector on a sphere, except for a finite set of
numbers of points, that correspond to the corners of the regular polyhedra.

For a population constituted of N neurons, during an initialization phase,
N vectors �ri, i ∈ {1..N} on the unit sphere are randomly generated by choosing
two random values λ1 ∈ [0, 2π[ and λ2 ∈ [−1, 1[ , such that

�ri =

⎛
⎜⎝
√

1 − (λ2)2 cos(λ1)√
1 − (λ2)2 sin(λ1)

λ2

⎞
⎟⎠ . (A.1)

This vector generation method guarantees a statistical uniform distribution on
the unit sphere that does not lead to a concentration of points at the poles
(Marsaglia, 1972). An iterative processes is then followed. At each time step,
using the same technique as in Equation (A.1), a training random input vector
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Figure A.1: Results produced by the iterative algorithm that generates a quasi
uniform distribution of points on a sphere. (left) Evolution of the mean (filled line)
and standard error (dotted line) of uniformity error ε along training time for the
generation of 100 populations of 100 neurons. (right) 100 points distributed on a
sphere using this algorithm.

�p is generated followed by an update of each �ri such that

�ri(t + 1) =

{
�ri(t) + δ(t)(�p − �ri(t)) if i = i�

�ri(t) if i �= i�
(A.2)

where δ(t) ∈ ]0, 1], a learning rate, decreases exponentially over training time,
and i� corresponds to the index of the closest preferred direction to �p such that

∀i, �ri�(t) · �p ≥ �ri(t) · �p.

This mechanism lets the set {�ri} of preferred directions converge toward an uni-
form distribution of its input space (Kohonen, 1990), which, by Equation (A.1),
is uniform over the unit sphere. To quantify the uniformity of the resulting
distribution, the error ε = ‖ 1

N

∑N
i �ri‖ is defined. Figure A.1 (left) shows the

evolution of ε for several trials, while Figure A.1 (right) shows an example of a
resulting set of preferred directions.
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A.2 A Coupled Attractor Model

In Chapter 7 a neural field model capable of integrating motion commands
in order to update its internal representation has been presented. However, few
mathematical details were provided to lighten the text. They are described in
the following section.

As introduced in Chapter 7, the following continuous attractor network dy-
namics is considered

τ u̇(�rA, �rB, t) = −u(�rA, �rB, t) + h(�rB, t) + x(�rA, �rB, t) +‹ [
WR(�rA′ , �rA) − λ∇WR(�rA′ , �rA) · �rB′

]
f
(
u(�rA′ , �rB′ , t)

)
d�rA′ d�rB′ (A.3)

where u(�rA, �rB, t) corresponds to the membrane potential of a neuron with time
constant τ , which is preferentially tuned to �rA, a variable in stimulus space ΓA

and to �rB ∈ ΓB. As definition spaces, ring and torus spaces were considered
(see Table 7.1). f(u) is the activation function chosen to be the linear threshold
function: max(0, u). WR is a center-surround, symmetric and Gaussian-like
recurrent weights kernel, λ > 0 a scaling factor, and ∇ corresponds to the
gradient operation along �rA. As will be shown further in the text, the main
effect of the second term of the recurrent connectivity is to make the neuron’s
sensitivity to the variable �rB implicitly correspond to a preferred movement
direction along the other variable �rA. The external inputs are decomposed into
two parts: the background input h(�rB, t) and the stimulus input x(�rA, �rB, t).

In the following, the dynamics of the interactions between the network and
its external inputs is considered. First of all, the case where the background
input alone is sufficient to drive the network marginal attractor states to become
marginal linear trajectories in the space ΓA will be presented. Afterwards, a
stimulus input will be defined so that it can drive the network toward its own
motion dynamics. A non-linear form of it will first be provided, since its deriva-
tion from the background input form is the most straightforward. Then, a linear
form of it will be derived. Importantly, the latter is more suitable for transfer-
ring information across neural populations, and therefore, this form will help
derive adequate synaptic projections. Consequently, within a larger network of
neural populations, instances of the model could transfer their information from
one to another.

Before staring, it is worth mentioning that, since such network dynamics can
only be described fully analytically for certain rare special cases (Amari, 1977;
Xie et al., 2002; Zhang, 1996), linear approximations around equilibrium points
will be considered. Importantly, general stable solutions are assumed to exist.
Indeed, the nature of the marginally stable solutions of such systems, known
as activity bumps, has already been long described in the literature (Wilson
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& Cowan, 1973; Amari, 1977; Zhang, 1996; Salinas & Thier, 2000; Xie et al.,
2002).

Static Solutions

First of all, static solutions are considered, which can be obtained when
the background input is balanced, and when no spatial input is applied to the
network, i.e., respectively, h(�rB, t) = h0 and x(�rA, �rB, t) = 0. Omitting the
system variables, a marginally stable and static solution given by u� and f� =
f(u�) are considered without loss of generality. In this case, since the system
is constant along �rB, the second term of the recurrent connectivity vanishes
through the closed integral, which, by rewriting Equ. (A.3), gives

u� −
˛

WR ∗ f� d�rB′ = h0 (A.4)

where ∗ denotes the convolution operation along �rA. Then, in order to extract
the homogeneous term h0 from the solutions, a normalization of these solutions
is defined by the following substitution

u� = h0 U�
0 and f� = h0 F �

0 (A.5)

where the U�
0 (�r) and F �

0 (�r) are solutions only defined on �rA. Further, rewriting
Equ. (A.4) gives

U�
0 − 1 =

˛
WR ∗ F �

0 d�rB′ (A.6)

From this, the multiplicative effect of the background homogeneous input h0

on the solutions of the system can be noticed. This property is at the basis of
the non-linear behavior of the neural fields in general (Salinas and Thier (2000)
and Chapter 5 of this thesis). This implies that, since h0 only acts as a scaling
factor, the following analysis can be restricted, without loss of generality, by
considering only normalized solutions of the system.

A.2.1 Velocity Integration

This section now describes how the background input can drive a stable field
activity packet toward a similar but traveling bump with velocity �v� along the
space defined on �rA. A usual transformation performed in such a situation is to
focus on a frame of reference moving with the bump so that, in this new frame,
it appears static (Xie et al., 2002; Zhang, 1996). According to the following
variable substitution

�̃rA = �rA −
ˆ t

0

�v�(t′) dt′ (A.7)
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gives, u̇(�rA, �rB, t) = −�v�(t) ·∇u(�̃rA, �rB, t)+ u̇(�̃rA, �rB, t), where ∇ is the gradient
operator along �̃rA. This leads Equ. (A.3) to become

−τ�v�(t) · ∇u(�̃rA, �rB, t)

+τ u̇(�̃rA, �rB, t) = −u(�̃rA, �rB, t) + h(�rB, t) + x(�̃rA, �rB, t) +‹ [
WR(�̃rA′ , �̃rA) − λ∇WR(�̃rA′ , �̃rA) · �rB′

]
f
(
u(�̃rA′ , �rB′ , t)

)
d�̃rA′ d�rB′ (A.8)

As mentioned earlier in the static case, a constant input h(�rB, t) = h0 leads the
system to be constant along �rB, which suppresses the second term of the recur-
rent connectivity. Moreover, as can be guessed, this term will be responsible for
compensating the new term on the left hand-side of Equ. (A.8). Therefore, this
symmetry needs to be broken, by adding an asymmetric term �hd

0(t) · �rB to the
driving background input such that

h(�rB, t) = h0 [1 + �hd
0(t) · �rB] (A.9)

where �hd
0 corresponds to the strength of the asymmetry breaking relative to the

constant term h0. If, for a while, the terms containing a gradient expression in
Equ. (A.8) are omitted, an approximate solution ũ� defined along both �rA and
�rB can be found. It is is equivalent to that given in Equ. (A.5) up to a constant
given by the asymmetric term in Equ. (A.9). In a compact form, the solution
of the system can be written as

ũ�(�̃rA, �rB, t) = h0 [�hd
0(t) · �rB + U�

0 (�̃rA)] (A.10a)

where U�
0 (�̃rA) is given by Equ. (A.6). Then, from Equ. (A.5), where the output

function f� was proportional to the background homogenous input, an approx-
imate f̃� is also assumed to be obtainable by such a non-linear transformation.
By means of a linear approximation around the equilibrium point, i.e., the static
case,

f̃�(�̃rA, �rB, t) = h0 [1 + γ0
�hd

0(t) · �rB]F �
0 (�̃rA) (A.10b)

where γ0 corresponds to the linear approximation factor. It corresponds to the
slope of the relation between the asymmetry of the background input and the
velocity of the network response. It strictly depends on the recurrent weights
profile, whose convolution is hard to solve analytically (Zhang, 1996).

Now, coming back to the full form of Equ. (A.8), the aim is here to show how
the background input should be set in order for the network representation to
exhibit the desired traveling activity profile. By first considering the symmetric
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part of the recurrent synaptic drive, it gives
˛

WR ∗ f̃� d�rB′
(A.10b)

= h0

˛
WR ∗ [1 + γ0

�hd
0 · �rB′ ]F �

0 d�rB′

= h0

[˛
WR ∗ F �

0 d�rB′ + γ0

˛
WR ∗ F �

0 [�hd
0 · �rB′ ] d�rB′

]
(A.6)
= h0[(U�

0 − 1) + 0] = h0 (U�
0 − 1)

Similarly, by considering its asymmetric component, it gives

−
˛

λ∇WR · �rB′ ∗ f̃� d�rB′
(A.10b)

= −h0λ

˛
∇WR · �rB′ ∗ [1 + γ0

�hd
0 · �rB′ F �

0 d�rB′

= −λh0

[˛
∇WR · �rB′ ∗ F � d�rB′ +

γ0

˛
∇WR · �rB′ ∗ F �

0 [�hd
0 · �rB′ ] d�rB′

]

= −λh0

[
0 + γ0

�hd
0 · ∇[WR ∗ F �

0 ]
]

(A.6)
= −λγ0 h0

�hd
0 · ∇(U�

0 − 1)

= −λγ0 h0
�hd

0 · ∇U�
0

And finally, the complete recurrent synaptic drive is given by
˛ [

WR − λ∇WR · �rB′
] ∗ f̃� d�rB′ = h0

[
U�

0 − 1 − λγ0
�hd

0 · ∇U�
0

]
(A.11)

Then, by substituting Eqs. (A.9), (A.10a) and (A.11) into the system Equ.
(A.8), it can be found that the velocity of the activity blob is determined by
the asymmetric component of the background input, following

�v�(t) ≈ λ γ0

τ
�hd

0(t) ⇔ �hd
0(t) ≈

τ

λ γ0
�v�(t) (A.12)

Further, because the approximate linear relationship between the external
commands and the network response is unbounded, the integration limit of the
network has to be determined. Since the network integration property relies on
a competition across the sub-layers sharing the same preferential tuning to the
variable �rB, the maximum intrinsic speed is reached when a single sub-layer has
a positive activation. In the ring attractor case, this special network state occurs
when the asymmetry in the background input h(�rB, t) is sufficiently strong to
completely inhibit one of the two sub-layers. However, in the torus case, because
of the continuous nature of the space ΓB spanned by the sub-layers, one sub-
layer may eventually drive the network alone only for ‖�hd

0‖ → ∞. In these cases,
the closed integral along �rB of the recurrent connectivity may be removed. The
full recurrent synaptic drive thus becomes

[
WR(�̃rA′ , �̃rA) − λ∇WR(�̃rA′ , �̃rA) · �rB′

] ∗ f̃�(�̃rA′ , �rB′ , t) (A.13)
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where �rB′ denotes the only active sub-layer given by �rB′ = �hd
0/‖�hd

0‖. This recur-
rent drive has already been shown to lead a traveling activity peak to move with
a constant velocity equal to λ/τ and with direction �rB′ (Zhang, 1996). This is
thus the integration limit that the model can reach.

A.2.2 Stimulus Input

In this section, the interest is on how a stimulus input which conveys infor-
mation related to the spatial localization of a stimulus may drive the network
representation to reflect the motion dynamics of that input. A stimulus located
at �s(t) in stimulus space and moving in phase with the network intrinsic veloc-
ity �v�(t), i.e., �̇s(t) = �v�(t), is considered. The shape G of the stimulus input is
assumed to be a Gaussian-like shape centered on its current location �s(t) with
breadth σs. Moreover, in order to compensate for the neural dynamics and for
the effect of the network recurrent connections, respectively, an additional dif-
ferential term and a scaling factor are needed to define a "well-behaving" input,
i.e., one which does not turn into an asymmetric activity peak in the network
representation when its moves within the neural field. It is defined by

x(�rA, �rB, t) = h1

[
G
(
�rA, �s(t), σs

) − τ�̇s(t) · ∇G
(
�rA, �s(t), σs

)]
[
1 + ε �̇s(t) · �rB

]
(A.14)

where ε is a temporary constant. As can be noticed while looking at the network
dynamics, the second differential term here compensates for the similar term in
Equ. (A.8). Then, considering the asymmetry in the strength of the input
relative to the neuron preferred movement direction, it modifies the network
intrinsic dynamics in a similar way to that of the background input (Equ. (A.9)).
Moreover, the velocity term �̇s(t) of the stimulus input is also assumed to be in
a form comparable to that of the background homogenous input given by Eqs.
(A.9) and (A.12) such that

�̇s(t) =
λ γ1

τ
�hd

1(t) (A.15)

where �hd
1(t) is a directional vector similar to �hd

0(t) defined previously. It deter-
mines the strength of the stimulus asymmetry and, thus, the stimulus velocity.
γ1 is like γ0 and corresponds to a linear approximation factor. Then, rewriting
Equ. (A.14) using (A.15) and writing ε = τ/λγ1 gives

x(�rA, �rB, t) = h1

[
G
(
�rA, �s(t), σs

) − λγ1
�hd

1(t) · ∇G
(
�rA, �s(t), σs

)]
[
1 + �hd

1(t) · �rB
]

(A.16)

In the moving frame of reference, using the substitution given in Equ. (A.7),
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the stimulus input equation becomes

x(�̃rA, �rB, t) = h1

[
G
(
�̃rA, �̃s, σs

) − λγ1
�hd

1(t) · ∇G
(
�̃rA, �̃s, σs

)]
[
1 + �hd

1(t) · �rB
]

(A.17)

where �̃s is constant since the stimulus is assumed to move according to �̇s(t) =
�v�(t). Again, similarly to the background input case described before (Eqs.
(A.10a) and (A.10b)), a linear approximation of the network activity around the
equilibrium point is considered. In addition, a superposition of solutions may
result from both forms of inputs, i.e., h(�rB, t) and x(�̃rA, �rB, t) is also assumed.
This leads to a family of solutions given by

ũ� = h0

[
U�

0 + �hd
0 · �rB

]
+ h1

[
U�

1 + �hd
1 · �rB G

]
(A.18a)

f̃� = h0

[
1 + γ0

�hd
0 · �rB

]
F �

0 + h1

[
1 + γ1

�hd
1 · �rB

]
F �

1 (A.18b)

where

−1 + U�
0 =

˛
WR ∗ F �

0 d�rB′ (A.19a)

−G + U�
1 =

˛
WR ∗ F �

1 d�rB′ (A.19b)

From these equations, the value that the parameters of the stimulus input should
take in order to respect the network dynamics can be determined. Again devel-
oping the system Equ. (A.8) results here in

−τ�v · ∇ũ� + ũ� = h + x +
˛ [

WR − λ∇WR · �rB′
] ∗ f̃� d�rB′

(A.9),(A.12),(A.16),(A.18),(A.19)⇔
−λγ0

�hd
0

[
h0∇U�

0 + h1∇[�hd
1 · �rB G + U�

1 ]
]
+

h0

[
�hd

0 · �rB + U�
0

]
+ h1

[
�hd

1 · �rBG + U�
1

]
=

h0

[
1 + �hd

0 · �rB
]

+ h1

[
G − λγ1

�hd
1∇G

][
1 + �hd

1 · �rB
]
+

h0

[
U�

0 − 1 − λγ0
�hd

0 · ∇U�
0

]
+ h1

[
U�

1 − G − λγ1
�hd

1 · ∇[U�
1 − G]

]
⇔

λγ0
�hd

0

[
h1∇[�hd

1 · �rB G + U�
1 ]
]

= λγ1
�hd

1

[
h1∇[�hd

1 · �rB G + U�
1 ]
]

And thus, the following constraints can be found, i.e.,

γ1
!= γ0 = γ and �hd

1
!= �hd

0 (A.20)

Therefore, in order for the network intrinsic dynamics to follow its input, the
asymmetric breaking of the network along �rB must match that the stimulus
inputs.
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Linear Input Form

From now on, the form of the stimulus input is defined using a velocity-
dependent scaling factor, which needs a non-linear operation in order to be
constructed. In the following, a different form of input containing only linear
terms is defined. Indeed, as will be shown further, this form of input will help
derive an expression for the synaptic projections across instances of the model,
which will allow them to completely transfer information they are encoding.
By rewriting the stimulus input in the moving frame of reference, as defined in
Equ. (A.17), and by replacing the velocity-dependent non-linear factor with a
velocity-dependent linear term, it gives

x(�̃rA, �rB, t) = h1

[
G
(
�̃rA, �̃s(t), σs

) − λγ�hd
0(t) · ∇G

(
�̃rA, �̃s(t), σs

)
+

η�hd
0(t) · �rB

]
(A.21)

where η > 0 is a scaling factor. Then, similarly to the previous sections, a family
of solutions is also considered. In this case, they are given by

ũ� = h0

[
U�

0 + �hd
0 · �rB

]
+ h1

[
η�hd

0 · �rB
]

+ h1 U�
1 (A.22a)

f̃� = h0

[
1 + γ �hd

0 · �rB
]
F �

0 + h1

[
γ η�hd

0 · �rB
]
F �

0 + h1 F �
1 (A.22b)

where the system of Eqs. (A.19) still apply. Again, replacing these equations
into the system dynamics (A.8) gives

−τ�v� · ∇ũ� + ũ� = h + x +
˛ [

WR − λ∇WR · �rB′
] ∗ f̃� d�rB′

(A.9),(A.12),(A.19),(A.21),(A.22)⇔
−λγ�hd

0

[
h0∇U�

0 + h1∇U�
1

]
+

h0

[
U�

0 + �hd
0 · �rB

]
+ h1

[
η�hd

0 · �rB
]

+ h1 U�
1 =

h0

[
1 + �hd

0 · �rB
]

+ h1

[
G − λγ �̂h0∇G + η�hd

0 · �rB
]

+h0

[
U�

0 − 1 − λγ �hd
0 · ∇U�

0

]
− λγ η h1

�hd
0 · ∇U�

0 + h1 [U�
1 − G]

⇔
∇[U�

1 − G
] != η ∇U�

0 (A.23)

Therefore, in order for the network intrinsic dynamics to follow that of the input,
the gradient of the stimulus-related solution [U�

1 − G] has to be proportional
to that of the homogeneous background input U�

0 . However, depending on
the shape of G, this may not necessarily be the case. Nevertheless, since the
solutions U�

i are the result of an equilibrium between the input and the drive
of the recurrent weights, one can assume that the latter dominate. As a result,
both sides of Equ. (A.23) can be considered to be very similar and hence
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proportional. An approximate value for η can thus be found such that

∇[U�
1 − G

] ≈ η∇U�
0 (A.24)

which, subsequently, using the system of Eqs. (A.19) is equivalent to

∇
˛

WR ∗ F �
1 d�rB′ ≈ η∇

˛
WR ∗ F �

0 d�rB′ (A.25)

A.2.3 Synaptic Projections

In this section, synaptic projections across populations are considered. Since
the proposed model might be integrated in a larger network of neural popula-
tions, the way how these populations may transfer the information they are en-
coding must be determined. Two neural populations, A and B, are considered.
In the following, these names will be used as indices in order to clearly identify
the corresponding variables and parameters of each population. The synaptic
projections W ab refer to a full directional connectivity between populations A

and B. It is given by

xb(�rA, �rB, t) =
‹

W ab(�rA′ , �rB′ , �rA, �rB)f
(
ua(�rA′ , �rB′ , t)

)
d�rA′ d�rB′ (A.26)

such that the input xb is fed to the population B. Moreover, W ab will be defined
so that the information related to both position and velocity will be transferred
from population A to B, such that �p a = �p b and �̇p a = �̇p b, where �p i is the pop-
ulation vector of population i defined in Chapter 7 by Equ. (7.2). Throughout
this section, the following convolution weights is considered

W ab(�rA′ , �rB′ , �rA, �rB) =[
W t(�rA′ , �rA) − λa∇W t(�rA′ , �rA) · �rB′ + μab �rB · �rB′

]
(A.27)

where W t is a center-surround, Gaussian-like convolution kernel (See Appendix
B.3 for a precise definition). Similarly to the fundamental input shape G of the
linear input form (Equ. (A.21)), the convolution through the projection weights
will produce a fundamental input shape, denoted by Gab. Moreover, since the
recurrent weights preferentially link neurons sharing similar tuning properties,
this guarantees that the position-related information �p a of the population A is
correctly transferred to population B. Then, since the activity profile f̃a� of the
population A (Equ. (A.22)b) is composed of a linear combination of two terms
F a0� and F a1�, the input shape Gab is assumed to be written as

Gab = h0

˛
W t ∗ F a0� d�rB′︸ ︷︷ ︸

Gab0

+ h1

˛
W t ∗ F a1� d�rB′︸ ︷︷ ︸

Gab1

(A.28)
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where Gab0 and Gab1 correspond, respectively, to the contribution of the back-
ground and the stimulus input of population A to the input xb feeding popula-
tion B. Further, from Equ. (A.25), there exists a ηa such that

∇Gab1 ≈ ηa∇Gab0 (A.29)

Then, by constraining the weights convolution kernel such that
˛

W t(�r) d�r = 0 ⇒
˛

Gab0 d�r =
˛

Gab1 d�r = 0 (A.30)

both sides of Equ. (A.29) can be integrated, which gives

Gab1 ≈ ηaGab0 (A.31)

which, by Equ. (A.28) then implies

Gab ≈ (h0 + ηah1)Gab0 (A.32)

Further, an exact input form equivalent to Equ. (A.21) can be defined in order
to match the projection through the weights W ab. It is given by

xb(�rA, �rB, t) = (h0 + ηah1) (A.33)[
Gab0

(
�rA, �p a(t), σs

) − λbγb�hBd

0 (t) · ∇Gab0
(
�rA, �p a(t), σs

)
+ ηb�hBd

0 (t) · �rB
]

where ηb may be different from ηa since these constants depend on the recurrent
weights of their respective populations and on the shape of their respective
inputs, i.e., G and Gab. Similarly, the population’s intrinsic parameters, such as
γ and λ, may also be different1. Thus, the relationship between them using the
constraint on the velocity information transfer is then defined by

�̇p a = �̇p b (A.12)⇔ λaγa

τ
�hAd

0 =
λbγb

τ
�hBd

0 (A.34)

Further, a value for μab which satisfyies the following equation
˛

W ab ∗ f̃a� d�rB′ = (A.33) (A.35)

can be found, where f̃a� is given by rewriting Equ. (A.22)b with the corre-
sponding population indices, i.e.,

f̃a� = h0

[
1 + γa �hAd

0 · �rB
]
F a0� +

h1

[
γa ηa�hAd

0 · �rB
]
F a0� + h1 F a1� (A.36)

1For simplicity, τ was assumed to be constant across the populations.
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Then, developing the left-hand side of Equ. (A.35) gives

˛ [
W t − λa∇W t · �rB′ + μab �rB · �rB′

] ∗ f̃�
a d�rB′

(A.36)
= (A.37)

h0

[
Gab0 − λaγa �hAd

0 ∇Gab0 + μabγa �hAd

0 · �rB
‹

F a0�
]

+h1

[
Gab1 − λaγa �hAd

0 ∇Gab1 + ηaμabγa �hAd

0 · �rB
‹

F a0�
]

(A.32)≈ (h0 + h1 ηa)
[
Gab0 − λaγa �hAd

0 ∇Gab0 + μabγa �hAd

0 · �rB
‹

F a0�
]

(A.34)≈ (h0 + h1 ηa)
[
Gab0 − λbγb �hBd

0 ∇Gab0 + μabλ
bγb

λa
�hBd

0 · �rB
‹

F a0�
]

And finally, by comparing Eqs. (A.33) and (A.37), it remains

μab ≈ λa

λb
ηb

γb
‚

F a0�
(A.38)

Therefore, using the synaptic projections W ab described by Equ. (A.27), a
population A can transfer its encoded information related to both position and
velocity to another population B.
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Appendix B

Simulation Parameters

B.1 Brain Pathways of Imitation and the

Ideomotor Principle

The parameters used in the simulations of the two models described in Chap-
ter 4 and illustrated in Figure 4.2, can be found in Table B.1. Concerning the
choice of these simulations parameters, they were initially tuned according to
the work hypotheses as presented in Section 4.2.1. Then, they were fine-tuned
using a gradient descent method in order to minimize the error

E = ‖Y − X̂‖2 (B.1)

between the behavioral data Y and the simulation results X̂. Simultaneously,
simulated RTs X were fitted to the original data Y using a first order least
squares error regression method. The estimated RTs X̂ are given by

X̂ = c1 X + c2 (B.2)

where the constants c1 and c2 were determined so that the error given in Equ.
(B.1) is also minimized.
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Parameter Single-Route Direct-Matching
Perceptual Layer

IT Region
Spatial Cue α 1.5 1.53

β 0.88 0.9
ϕ ±π/ 2 ±π/ 2

STS Region
Movement Cue α 1.5 1.53

β 0.97 1.0
ϕ ±π/ 2 ±π/ 2

Top-down Modulation hT 0.26 0.2
Reciprocal Inhibition W SpaCue,MvtCue 24.11 16.65

WMvtCue,SpaCue 24.11 16.65

STS Region
Movement Observation α 0.0 0.0

β 0.79 0.5
ϕ ±π/ 2 ±π/ 2

Decision Layer
LPFC Region

Cue Integration α 1.02 2.0
αSpaCue,CueInt 1.16 1.65
αMvtCue,CueInt 1.16 1.65
γIdeInt,CueInt 8.95

Motor Preparation Layer
AMFC, SMA Regions

Motor Plan (L/R) α 0.0 0.0
β 1.0 1.0
ϕ ±π/ 2 ±π/ 2

SMA, PMd Regions
Ideomotor Integration (L/R) α 1.98 1.81

αMotPlan,IdeInt 1.08 1.19
αMotObs,IdeInt 1.08 1.19

PMv Region
Motor Selection (L/R) α 0.15 0.09

WCueInt,MotSel 3.91 4.02
αMotPlan,MotSel 1.58
αIdeInt,MotSel 1.58

Reciprocal Inhibition WMotSel(L),MotSel(R) 7.71 7.34
WMotSel(R),MotSel(L) 7.71 7.34

Execution Threshold E0 0.08 0.08

Other Constants

Variance Profile σ 0.3 0.3
σCueInt,MotSel 0.5 0.5

Time Constant τ 0.1 0.1
Additional time delay [ms] Δ

Compatible mapping condition 0.0 0.0
Incompatible mapping condition 73.0 73.0

Regression constants c1 3292.19 -263.32
c2 1770.54 -69.21

Table B.1: Simulation parameters used in the study presented in Chapter 4.
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B.2 Interferences in the Transformation

of Frames of Reference

The parameters used in the simulations of the model described in Chapter
6 and illustrated in Figure 6.4, can be found in the following. The respective
range of arm and body orientations are θD ∈ {k · 22.5◦|k ∈ {0..8}} and φD ∈
{k · 22.5◦|k ∈ {0..15}}. The amplitude of postural change in Experiment 2 is
in the range ΔθD ∈ {k · 22.5◦|k ∈ {1..8}}. The additional inhibition Δh was
varied such that Δh ∈ {0.5 + k · 0.125|k ∈ {0..6}}. According to the simulation
parameters, the complete inhibition of the irrelevant transformation was reached
when Δh = Δh0 = 1.25. This case was considered to be the baseline condition.
The model parameters are: the amplitudes of the weights, α = 12, αSArm,SOut =
αAArm,GFφ = αGFφ,AOut = 5.4, αABody,GFφ = 8.0, and αAOut,Sel = αSOut,Sel =
5.0, the breadth of the weights profiles and their offset, unless specified, σ = 0.5
and η =

¸
g(�r, �r ′) d�r, then σABody,GFφ = ∞ and ηAArm,GFφ = 1.0; the amplitude

of the inputs, βSArm = βAArm = βABody = 0.5. These parameters were chosen so
that the response energy of both transformations are equal for an equivalent task
modulation. Finally, the task modulatory inputs and go signal are, hTask = 0.5,
Δh0 = 0.75 and hGo = 1.5.

B.3 Motion Integration, Sensitivity and

Sensory Discrimination

In order to implement the model described in Chapter 7, the recurrent
weights followed Equ. (3.8), and the shape G of the stimulus input was de-
fined according to (3.10). Moreover, the simulations were performed using the
fourth-order Runge-Kutta numerical algorithm for the resolution of dynamic
systems. Except where explicitly defined in the description of each experiment,
the simulation parameters that were used in Chapter 7 are given in the following
table.

Value of the parameters

Ring α = 2, αt = 2, σ = 0.3, δ = 1, λ = 0.1, β = 1
attractor h0 = 1, h1 = 1, τ = 0.1

Discretization along ΓA
1 : 128 neurons

ΓB
1 : 2 sub-layers

Torus α = 1, αt = 2, σ = 0.3, δ = 1, λ = 0.1, β = 1,
attractor h0 = 1, h1 = 1, τ = 0.1

Discretization along ΓA
2 : 32 × 32 neurons

ΓB
2 : 8 sub-layers
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B.4 Movement Generation, Sensory

Discrimination and Interferences

The parameters used in the simulations of the model described in Chapter
8 and illustrated in Figure 8.6, can be found in the following table.

Value of the parameters

General parameters τ = 0.1
Discretization along ΓA: 256 neurons

ΓB: 6 sub-layers

Recurrent Connectivity The goal network:
α = 4, σ = 0.3, δ = 1

The other networks:
α = 2, σ = 0.3, δ = 1, λ = 1, γ = 0.91

Synaptic Projections αG,C = 2, σG,C = 0.3, δG,C = 4
αS,C = 2, σS,C = 0.3, δS,C = 1
WC,S = WC,O = 0.55

External inputs hS
0 = hO

0 = 1, hG
0 = hC

0 = 0
βG = βS = βV = 1, σs = 0.3
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Appendix C

Publications of the Author

This appendix lists the publications of the author related to the work de-
scribed in this thesis. Along this enumeration, a brief comment concerning

the relationship of each paper with this thesis is given. The articles are listed
according to the date of their publication.

Sauser, E. L. and Billard, A. G.. Three dimensional frames of reference trans-
formations using gain modulated populations of neurons. In Proceedings of
12th European Symposium on Artificial Neural Networks (ESANN), Bruges,
Belgium. 543-548, 2004.

This paper addresses the problem of frames of reference transformations
as is described in Chapter 5 of this thesis. Importantly, a formal demon-
stration of how population vector coding can proceed arbitrary three di-
mensional rotations and translations is provided. The described method
for three dimensional rotations consists of a decomposition of the trans-
formation into a projection, a planar rotation and a translation.

Sauser, E. L. and Billard, A. G.. Three dimensional frames of references trans-
formations using recurrent populations of neurons. Neurocomputing. 64:5-24,
2005.

The model presented in this paper extends that mentioned above, mostly
by proposing a method by which a network can preserve the amplitude
of the information to be transformed across the transformation process.
It consists of a two-layer architecture which is capable to remove the
unnecessary amplification term produced by the recurrent interactions of
the considered neural field model. This work also contributed significantly
to Chapter 5.

Sauser, E. L. and Billard, A. G.. View sensitive cells as a neural basis for the
representation of others in a self-centered frame of reference. In Proceedings
of the Third International Symposium on Imitation in Animals and Artifacts
(AISB), Hatfield, UK. 119-127, 2005.

This paper presents a neural mechanism for frames of reference transfor-
mations which performs projections of the input vector on the principal
axes of the referential. It primarily aims at explaining the transformation
processes occurring when considering visual information. An application
proposed by this paper is a simple mimicry task where a robot can repro-
duces hand movements performed by a human subject standing in various
orientations relative to the robot. This work was also reported in Chapter
5 of this thesis.
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Sauser, E. L. and Billard, A. G.. Parallel and distributed neural models of the
ideomotor principle: An investigation of imitative cortical pathways. Neural
Networks. 19(3):285-298,2006.

The work presented in this paper corresponds to the modeling investi-
gation described in Chapter 4 of this thesis. Its aim is to understand
and decipher the neural processes and the cortical pathways responsible
for automatic imitative behaviors as reported in experimental psychology.
Importantly, this work suggests two plausible cortical pathways which
could mediate the related behaviors. In addition, a novel experimental
paradigm which could validate or refute either of the two hypotheses is
also proposed along with its predictions.

Sauser, E. L. and Billard, A. G.. Biologically inspired multimodal integration:
Interferences in a human-robot interaction game. In proceedings of the Inter-
national Conference on Intelligent Robots and Systems (IROS), Beijing, China.
2006.

This paper illustrates how the principle of ideomotor compatibility could
be applied to a robotic platform in order to provide robots with human-
like behaviors.

Sauser, E. L. and Billard, A. G.. Dynamic updating of distributed neural repre-
sentations using forward models. Biological Cybernetics. 95(6):567-588, 2006.

This paper presents an investigation as to how a neural field can integrate
external commands in order to update dynamically its internal representa-
tion. Importantly, the analysis of the developed network when confronted
to external inputs showed that the model can exhibit several interesting
properties, almost all of which were reported in the experimental litera-
ture. They includes neural tuning to the velocity of visual stimuli and
abilities for sensory discrimination. Moreover, such mechanism has also
been suggested to have important implications regarding sensorimotor
transformations, motor control, motor imagery, and imitation. This work
was reported in Chapter 7 of this thesis.

Sauser, E. L. and Billard, A. G.. Interferences in the transformation of reference
frames during a posture imitation task. In Proceedings of the International
Conference on Artificial Neural Networks (ICANN), Porto, Portugal. 2007.

The modeling study presented in this paper was reported in Chapter 6 of
this thesis. It describes a model which illustrates how the mechanisms of
transformations across reference frames may be applied in order to model
the problem of transformations across frames of reference in a posture
imitation task. This work proposes that, in such a task, imitation is
mediated by two concurrent transformations selectively sensitive to spatial
and anatomical cues. In addition, an experimental paradigm was devised,
which allowed the modeling of the interference patterns caused by the
interaction between the anatomical, and the spatial imitative strategy.
The predictions provided by this simulation study are finally suggested
to be confronted to real behavioral data in order to validate or refute the
model.
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